研究简报

可见光驱动表面富含氧空位Nb2O5催化醇氧化反应

  • 高艳华 ,
  • 张银潘 ,
  • 张妍 ,
  • 宋涛 ,
  • 杨勇
展开
  • a青岛大学化学化工学院 山东青岛 266101
    b中国科学院青岛生物能源与过程研究所 山东青岛 266101

收稿日期: 2022-12-06

  修回日期: 2023-01-09

  网络出版日期: 2023-02-07

基金资助

国家自然科学基金(22002178); 国家自然科学基金(22078350); 山东省自然科学基金(ZR2020KB016); 山东能源学院基金(SEII202138)

Visible-Light-Induced Aerobic Oxidation of Alcohols over Surface Oxygen Vacancies-Enriched Nb2O5

  • Yanhua Gao ,
  • Yinpan Zhang ,
  • Yan Zhang ,
  • Tao Song ,
  • Yong Yang
Expand
  • aCollege of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shangdong 266101
    bQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shangdong 266101

Received date: 2022-12-06

  Revised date: 2023-01-09

  Online published: 2023-02-07

Supported by

National Natural Science Foundation of China(22002178); National Natural Science Foundation of China(22078350); Natural Science Foundation of Shandong Province(ZR2020KB016); Shandong Energy Institute Fund(SEII202138)

摘要

醇氧化合成相应的羰基化合物在有机化学基础研究及工业应用中占有非常重要的地位. 通过表面富含氧空位Nb2O5光催化剂的开发, 发展了一种醇氧化为羰基化合物的绿色高效合成方法. 该催化体系具有反应条件温和, 底物适用性强和官能团兼容性广的特点. 此外, 该催化剂表现出优良的性能稳定性, 循环使用多次后, 保持催化活性不变.

本文引用格式

高艳华 , 张银潘 , 张妍 , 宋涛 , 杨勇 . 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023 , 43(7) : 2572 -2579 . DOI: 10.6023/cjoc202212007

Abstract

Oxidation of alcohols to the corresponding carbonyl compounds plays a very important role in fundamental research and industrial applications of organic chemistry. In this paper, a green and efficient method for alcohol oxidation to carbonyl compounds was reported over a surface oxygen vacancies-enriched Nb2O5 as the photocatalyst. The catalytic system demonstrates high activity with wide substrate scope and diverse functional group compatibility under mild reaction conditions and visible-light irradiation. In addition, the catalyst has good catalytic stability, which can be recycled for several times with maintaining the catalytic activity unchanged.

参考文献

[1]
(a) Boekaerts, B.; Sels, B. F. Appl. Catal. B: Environ. 2021, 283, 119607.
[1]
(b) Büker, J.; Huang, X.; Bitzer, J.; Kleist, W.; Muhler, M.; Peng, B. ACS Catal. 2021, 11, 7863.
[2]
(a) Guethmundsson, A.; Schlipkoter, K. E.; Backvall, J. E. Angew. Chem. 2020, 59, 5403.
[2]
(b) Muhammet, U.; Kazuaki, I. Chem. Commun. 2009, 16, 2086.
[2]
(c) Camilla, P., Francesca, C. Green Chem. 2012, 14, 547.
[2]
(d) Stephanie, D. M.; Stuart, L. S. J. Org. Chem. 1994, 59, 7549.
[2]
(e) Hirofumi, T.; Yasuyuki, K. Adv. Synth. Catal. 2004, 346, 111.
[2]
(f) Jean, H., Marie-José, E. Kostas, A. J. Chem. Soc., Perkin Trans. 1 1982, 1967.
[3]
(a) Zhang, Y.; Schilling, W.; Riemer, D.; Das, S. Nat. Protoc. 2020, 15, 822.
[3]
(b) Chen, W.; Rein, F. N.; Rocha, R. C. Angew. Chem., Int. Ed. 2009, 48, 9672.
[3]
(c) Meng, C.; Yang, K.; Fu, Z.; Yuan, R. ACS Catal. 2015, 5, 3760.
[4]
(a) Chen, L.; Tang, J.; Song, L.; Chen, P.; He, J.; Au, C.; Yin, S. Appl. Catal. B: Environ. 2019, 242, 379.
[4]
(b) Cie?la, P.; Kocot, P.; Mytych, P.; Stasicka, Z. J. Mol. Catal. A: Chem. 2004, 224, 17.
[4]
(c) Xu, C.; Pan, Y.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S.; Jiang, H. J. Am. Chem. Soc. 2019, 141, 19110.
[4]
(d) Zhang, Y.; Zhang, N.; Tang, Z.; Xu, Y. Chem. Sci. 2012, 3, 2812.
[4]
(e) Zhang, Y.; Zhang, N.; Tang, Z.; Xu, Y. ACS Nano 2012, 6, 9777.
[5]
Song, T.; Wang, C.; Zhang, Y.; Shi, X.; Li, Y.; Yang, Y. Appl. Catal. B: Environ. 2022, 304, 120964.
[6]
Zhang, Y.; Song, T.; Zhou, X.; Yang, Y. Appl. Catal. B: Environ. 2022, 316, 121622.
[7]
Song, T.; Zhang, Y.; Wang, C.; Li, Y.; Yang, Y. Chin. J. Chem. 2022, 40, 2618.
[8]
(a) Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2010, 26, 3894.
[8]
(b) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.
[9]
Saeki, A.; Yamamoto, N.; Yoshida, Y.; Kozawa, T. J. Phy. Chem. A 2011, 115, 10166.
[10]
(a) Chen, Y.; Wang, Z. U.; Wang, H.; Lu, J.; Yu, S.; Jiang, H. J. Am. Chem. Soc. 2017, 139, 2035.
[10]
(b) Huang, Y.; Song, H.; Liu, Y.; Wang, Q. Chem.-Eur. J. 2018, 24, 2065.
[11]
Xiao, X.; Jiang, J.; Zhang, L. Appl. Catal. B: Environ. 2013, 142, 487.
[12]
Guan, R.; Bennett, E. L.; Huang, Z.; Xiao, J. Green Chem. 2022, 24, 2946.
[13]
Hong, B.; Lee, A. Org. Biomol. Chem. 2022, 20, 5938.
[14]
Jiang, X.; Wang, W.; Wang, H.; He, Z.; Yang, Y.; Wang, K.; Liu, Z.; Han, B. Green Chem. 2022, 24, 7652.
[15]
Chang, Y.; Xie, Y.; Zhao, C.; Ren, J.; Su, W.; Zhao, W.; Wu, L.; Yu, H. ChemCatChem 2022, 14, e202200209.
[16]
Ramachandrana, K.; Anbarasan, P. Chem. Commun. 2022, 58, 10536.
[17]
Mathew, S.; Sagadevan, A.; Renn, D.; Magnus, R. ACS Catal. 2021, 11, 12565.
文章导航

/