研究论文

电子转移活化和1,2-硼迁移相结合实现酰胺脱氧硅基化

  • 杨雯涵 ,
  • 焦继文 ,
  • 王晓明
展开
  • a 四川师范大学化学与材料科学学院 成都 610068
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
    c 国科大杭州高等研究院化学与材料科学学院 杭州 310024

收稿日期: 2022-12-14

  修回日期: 2023-02-01

  网络出版日期: 2023-02-23

基金资助

国家自然科学基金(22171278); 国家自然科学基金(21821002)

Merging Electron Transfer Activation with 1,2-Metalate Migration: Deoxygenative Silylation of Amides

  • Wenhan Yang ,
  • Jiwen Jiao ,
  • Xiaoming Wang
Expand
  • a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032
    c School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
* Corresponding author. E-mail:

Received date: 2022-12-14

  Revised date: 2023-02-01

  Online published: 2023-02-23

Supported by

National Natural Science Foundation of China(22171278); National Natural Science Foundation of China(21821002)

摘要

报道了在SmI2/Mg存在下, 使用膦配体促进的芳基酰胺与硅硼试剂的直接脱氧硅基化反应, 以中等至优异的收率和良好的官能团兼容性, 得到一系列具有高价值的α-氨基硅烷化合物. 这一策略成功的关键在于电子转移诱导活化酰胺和1,2-硼迁移的融合, 通过添加双膦配体Xantphos能够提高反应的效率. 该反应具有操作简单和条件温和的优点, 且所需原料易得, 产物价值高.

本文引用格式

杨雯涵 , 焦继文 , 王晓明 . 电子转移活化和1,2-硼迁移相结合实现酰胺脱氧硅基化[J]. 有机化学, 2023 , 43(5) : 1857 -1867 . DOI: 10.6023/cjoc202212019

Abstract

A direct deoxygenative silylation of amides with silylboronate reagents is developed in the presence of SmI2/Mg, affording a variety of high value-added α-aminosilane compounds in moderate to excellent yields with good functional group compatibility. The key to the success of this strategy lies in the merging of activation of amides induced by electron transfer with 1,2-metalate migration. The addition of Xantphos ligand can improve the reaction efficiency. The reactions are operationally simple and proceed under mild conditions, the raw materials are easily available and the products are highly valuable.

参考文献

[1]
(a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
[1]
(b) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, Wiley-VCH, New York, 2000.
[1]
(c) Sewald, N.; Jakubke, H. D. Peptides: Chemistry and Biology, Wiley-VCH, Weinheim, Germany, 2002.
[1]
(d) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731.
[1]
(e) Aubé, J. Angew. Chem., Int. Ed. 2012, 51, 3063.
[2]
(a) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899.
[2]
(b) Sato, T.; Yoritate, M.; Tajima, H.; Chida, N. Org. Biomol. Chem. 2018, 16, 3864.
[2]
(c) Huang, P.-Q. Acta Chim. Sinica 2018, 76, 357. (in Chinese)
[2]
(黄培强, 化学学报, 2018, 76, 357.)
[2]
(d) Czerwiński, P. J.; Furman, B. Trends Chem. 2020, 2, 782.
[2]
(e) Czerwinski, P. J.; Furman, B. Front. Chem. 2021, 9, 655849.
[3]
(a) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010, 49, 3037.
[3]
(b) Seebach, D. Angew. Chem., Int. Ed. 2011, 50, 96.
[3]
(c) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697.
[3]
(d) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
[4]
(a) Smith, A. M.; Whyman, R. Chem. Rev. 2014, 114, 5477.
[4]
(b) Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chem. Soc. Rev. 2016, 45, 6685.
[4]
(c) Blanchet, J.; Chardon, A.; Morisset, E.; Rouden, J. Synthesis 2018, 50, 984.
[4]
(d) Matheau-Raven, D.; Gabriel, P.; Leitch, J. A.; Almehmadi, Y. A.; Yamazaki, K.; Dixon, D. J. ACS Catal. 2020, 10, 8880.
[4]
(e) Ong, D. Y.; Chen, J.-h.; Chiba, S. Bull. Chem. Soc. Jpn. 2020, 93, 1339.
[4]
(f) Tahara, A.; Nagashima, H. Tetrahedron Lett. 2020, 61, 151423.
[4]
(g) Cabrero-Antonino, J. R.; Adam, R.; Papa, V.; Beller, M. Nat. Commun. 2020, 11, 3893.
[5]
(a) Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 9511.
[5]
(b) Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.
[5]
(c) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413.
[5]
(d) Hu, J.; Wang, M.; Pu, X.; Shi, Z. Nat. Commun. 2017, 8, 14993.
[5]
(e) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864.
[5]
(f) Shi, S.; Nolan, S. P.; Szostak, M. Acc. Chem. Res. 2018, 51, 2589.
[5]
(g) Ronson, T. O.; Renders, E.; Van Steijvoort, B. F.; Wang, X.; Wybon, C. C. D.; Prokopcova, H.; Meerpoel, L.; Maes, B. U. W. Angew. Chem., Int. Ed. 2019, 58, 482.
[5]
(h) Zhou, T.; Ji, C. L.; Hong, X.; Szostak, M. Chem. Sci. 2019, 10, 9865.
[5]
(i) Li, G.; Ma, S.; Szostak, M. Trends Chem. 2020, 2, 914.
[5]
(j) Powell, W. C.; Evenson, G. E.; Walczak, M. A. ACS Catal. 2022, 12, 7789.
[6]
(a) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574.
[6]
(b) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J. Chem.-Eur. J. 2015, 21, 111.
[6]
(c) Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem., Int. Ed. 2017, 56, 3655.
[6]
(d) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
[6]
(e) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246.
[6]
(f) Huang, P.-Q.; Ou, W.; Han, F. Chem. Commun. 2016, 52, 11967.
[6]
(g) Ou, W.; Han, F.; Hu, X.-N.; Chen, H.; Huang, P.-Q. Angew. Chem., Int. Ed. 2018, 57, 11354.
[6]
(h) Chen, D.-H.; Sun, W.-T.; Zhu, C.-J.; Lu, G.-S.; Wu, D.-P.; Wang, A.-E.; Huang, P.-Q. Angew. Chem., Int. Ed. 2021, 60, 8827.
[6]
(i) Chen, H.; Wu, Z.-Z.; Shao, D.-Y.; Huang, P.-Q. Sci. Adv. 2022, eade3431.
[7]
Sun, W.; Wang, L.; Hu, Y.; Wu, X.; Xia, C.; Liu, C. Nat. Commun. 2020, 11, 3113.
[8]
(a) Kagan, H. B.; Namy, J. L. Tetrahedron 1986, 42, 6573.
[8]
(b) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307.
[8]
(c) Nicolaou, K. C.; Ellery, S. P.; Chen, J. Angew. Chem., Int. Ed. 2009, 48, 7140.
[8]
(d) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371.
[8]
(e) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238.
[8]
(f) Gopalaiah, K.; Kagan, H. B. Chem. Rec. 2013, 13, 187.
[8]
(g) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc. Rev. 2013, 42, 9155.
[8]
(h) Szostak, M.; Fazakerley, N.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114, 5959.
[9]
(a) Owaga, A.; Takami, N.; Sekiguchi, M.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114, 8730.
[9]
(b) Ogawa, A.; Nanke, T.; Takami, N.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Appl. Organomet. Chem. 1995, 9, 461.
[9]
(c) Ogawa, A.; Takami, N.; Nanke, T.; Ohya, S.; Hirao, T.; Sonoda, N. Tetrahedron 1997, 53, 12895.
[10]
(a) Just-Baringo, X.; Procter, D. J. Acc. Chem. Res. 2015, 48, 1263.
[10]
(b) Parmar, D.; Duffy, L. A.; Sadasivam, D. V.; Matsubara, H.; Bradley, P. A.; Flowers II, R. A.; Procter, D. J. J. Am. Chem. Soc. 2009, 131, 15467.
[10]
(c) Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 2268.
[10]
(d) Szostak, M.; Spain, M.; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 8459.
[10]
(e) Huq, S. R.; Shi, S.; Diao, R.; Szostak, M. J. J. Org. Chem. 2017, 82, 6528.
[10]
(f) Péter, á.; Crisenza, G. E. M.; Procter, D. J. J. Am. Chem. Soc. 2022, 144, 7457.
[11]
(a) Jiao, J.; Wang, X. Angew. Chem., Int. Ed. 2021, 60, 17088.
[11]
(b) He, Y.; Wang, Y.; Li, S.-J.; Lan, Y.; Wang, X. Angew. Chem., Int. Ed. 2022, e202115497.
[11]
(c) Wang, Y.; Shao, Y.; Xue, X.; Wang, X. Cell Rep. Phys. Sci. 2022, 3, 101116.
[11]
For a highlight, see: (d) Wang, A.-E. H., P.-Q. Chin. J. Org. Chem. 2021, 41, 3738. (in Chinese)
[11]
(王爱娥, 黄培强, 有机化学, 2021, 41, 3738.)
[12]
(a) Matteson, D. S. Tetrahedron 1989, 45, 1859.
[12]
(b) Barluenga, J.; Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Nat. Chem. 2009, 1, 494.
[12]
(c) Peng, C.; Zhang, W.; Yan, G.; Wang, J. Org. Lett. 2009, 11, 1667.
[12]
(d) Capriati, V.; Florio, S. Chem.-Eur. J. 2010, 16, 4152.
[12]
(e) Li, H.; Zhang, Y.; Wang, J. Synthesis 2013, 45, 3090.
[12]
(f) Leonori, D.; Aggarwal, V. K.; Acc. Chem. Res. 2014, 47, 3174.
[12]
(g) Watson, C. G.; Unsworth, P. J.; Leonori, D.; Aggarwal, V. K. Lithium-Boron Chemistry: A Synergistic Strategy in Modern Synthesis, Eds.: Luisi, R.; Capriati, V., Wiley-VCH, Weinheim, 2014, pp. 397-422.
[12]
(h) Valdés, C.; Paraja, M.; Plaza, M. Synlett 2017, 28, 2373.
[12]
(i) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
[12]
(j) Wang, J. Pure Appl. Chem. 2018, 90, 617.
[12]
(k) Zhu, Q.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2021, 41, 661. (in Chinese)
[12]
(朱庆, 夏春谷, 刘超, 有机化学, 2021, 41, 661.)
[13]
(a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
[13]
(b) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.
[13]
(c) Brook, M. Silicon in Organic, Organometallic and Polymer Chemistry, Wiley, New York, 2000.
[13]
(d) Showell, G. A.; Mills, J. S. Drug Discovery Today 2003, 8, 551.
[13]
(e) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388.
[13]
(f) Ramesh, R.; Reddy, D. S. J. Med. Chem. 2018, 61, 3779.
[14]
(a) Kim, J.; Hewitt, G.; Carroll, P.; Sieburth, S. M. J. Org. Chem. 2005, 70, 5781.
[14]
(b) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. 2007, 72, 10035.
[14]
(c) Nielsen, L.; Skrydstrup, T. J. Am. Chem. Soc. 2008, 130, 13145.
[14]
(d) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
[14]
(e) Madsen, J. L. H.; Andersen, T. L.; Santamaria, S.; Nagase, H.; Enghild, J. J.; Skrydstrup, T. J. Med. Chem. 2012, 55, 7900.
[14]
(f) Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Chem. Rev. 2016, 116, 11654.
[14]
(g) Madsen, J. L.; Hjorringgaard, C. U.; Vad, B. S.; Otzen, D.; Skrydstrup, T. Chem.-Eur. J. 2016, 22, 8358.
[15]
(a) Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1638.
[15]
(b) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400.
[16]
(a) Buynak, J. D.; Geng, B. Organometallics 1995, 14, 3112.
[16]
(b) Sieburth, S. M.; Somers, J. J.; O'Hare, H. K. Tetrahedron 1996, 52, 5669.
[16]
(c) Barberis, C.; Voyer, N. Tetrahedron Lett. 1998, 39, 6807.
[16]
(d) Sieburth, S. M.; O'Hare, H. K.; Xu, J.; Chen, Y.; Liu, G. Org. Lett. 2003, 5, 1859.
[17]
(a) Mutahi, M. w.; Nittoli, T.; Guo, L.; Sieburth, S. M. J. Am. Chem. Soc. 2002, 124, 7363.
[17]
(b) Ballweg, D. M.; Miller, R. C.; Gray, D. L.; Scheidt, K. A. Org. Lett. 2005, 7, 1403.
[17]
(c) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. 2007, 72, 10035.
[17]
(d) Hernández, D.; Nielsen, L.; Lindsay, K. B.; ángeles López- García, M.; Bjerglund, K.; Skrydstrup, T. Org. Lett. 2010, 12, 3528.
[17]
(e) Bo, Y.; Singh, S.; Duong, H. Q.; Cao, C.; Sieburth, S. M. Org. Lett. 2011, 13, 1787.
[17]
(f) Singh, S.; Sieburth, S. M. Org. Lett. 2012, 14, 4422.
[17]
(g) Min, G. K.; Hernández, D.; Skrydstrup, T. Acc. Chem. Res. 2013, 46, 457.
[17]
(h) Madsen, J. L.; Hjorringgaard, C. U.; Vad, B. S.; Otzen, D.; Skrydstrup, T. Chem.-Eur. J. 2016, 22, 8358.
[18]
(a) Vyas, D. J.; Fr?hlich, R.; Oestreich, M. Org. Lett. 2011, 13, 2094.
[18]
(b) Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 4964.
[18]
(c) Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028.
[18]
(d) Zhao, C.; Jiang, C.; Wang, J.; Wu, C.; Zhang, Q.-W.; He, W. Asian J. Org. Chem. 2014, 3, 851.
[18]
(e) Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. Org. Chem. Front. 2016, 3, 1725.
[18]
(f) Feng, J. J.; Oestreich, M. Org. Lett. 2018, 20, 4273.
[18]
(g) Feng, J. J.; Mao, W.; Zhang, L.; Oestreich, M. Chem. Soc. Rev. 2021, 50, 2010.
[18]
(h) Xue, W.; Oestreich, M. ACS Cent. Sci. 2020, 6, 1070.
[19]
Yu, X.; Daniliuc, C. G.; Alasmary, F. A.; Studer, A. Angew. Chem., Int. Ed. 2021, 60, 23335.
[20]
Jiao, J.; Yang, W.; Wang, X. J. Org. Chem. 2023, 88, 1594.
[21]
(a) He, Y.; Wang, X. Org. Lett. 2021, 23, 225.
[21]
(b) Li, Z.; Zhao, F.; Ou, W.; Huang, P.-Q.; Wang, X. Angew. Chem., Int. Ed. 2021, 60, 26604.
[21]
(c) Jiang, F.; Zhao, F.; He, Y.; Luo, X.; Wang, X. Cell Rep. Phys. Sci. 2022, 3, 100955.
[21]
(d) Zhao, F.; Jiang, F.; Wang, X. Sci. China Chem. 2022, 65, 2231.
[22]
Zhou, L.; Qiu, J.; Wang, C.; Zhang, F.; Yang, K.; Song, Q. Org. Lett. 2022, 24, 3249.
[23]
(a) Machrouhi, F.; Hamann, B.; Namy, J.-L.; Kagan, H. B. Synlett 1996, 633.
[23]
(b) Machrouhi, F.; Namy, J.-L. Tetrahedron Lett. 1999, 40, 1315.
[23]
(c) Dahlén, A.; Hilmersson, G. Eur. Inorg. Chem. 2004, 3393.
[23]
(d) Flowers II, R. A. Synlett 2008, 10, 1427.
[23]
(e) Szostak, M.; Spain, M.; Parmar, D.; Procter, D. J. Chem. Commun. 2012, 48, 330.
[24]
(a) Shabangi, M.; Flowers II, R. A. Tetrahedron Lett. 1997, 38, 1137.
[24]
(b) Shabangi, M.; Sealy, J. M.; Fuchs, J. R.; Flowers II, R. A. Tetrahedron Lett. 1998, 39, 4429.
[24]
(c) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238.
[24]
(d) Boyd, E. A.; Peters, J. C. J. Am. Chem. Soc. 2022, 144, 21337.
文章导航

/