电子转移活化和1,2-硼迁移相结合实现酰胺脱氧硅基化
收稿日期: 2022-12-14
修回日期: 2023-02-01
网络出版日期: 2023-02-23
基金资助
国家自然科学基金(22171278); 国家自然科学基金(21821002)
Merging Electron Transfer Activation with 1,2-Metalate Migration: Deoxygenative Silylation of Amides
Received date: 2022-12-14
Revised date: 2023-02-01
Online published: 2023-02-23
Supported by
National Natural Science Foundation of China(22171278); National Natural Science Foundation of China(21821002)
杨雯涵 , 焦继文 , 王晓明 . 电子转移活化和1,2-硼迁移相结合实现酰胺脱氧硅基化[J]. 有机化学, 2023 , 43(5) : 1857 -1867 . DOI: 10.6023/cjoc202212019
A direct deoxygenative silylation of amides with silylboronate reagents is developed in the presence of SmI2/Mg, affording a variety of high value-added α-aminosilane compounds in moderate to excellent yields with good functional group compatibility. The key to the success of this strategy lies in the merging of activation of amides induced by electron transfer with 1,2-metalate migration. The addition of Xantphos ligand can improve the reaction efficiency. The reactions are operationally simple and proceed under mild conditions, the raw materials are easily available and the products are highly valuable.
| [1] | (a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243. |
| [1] | (b) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, Wiley-VCH, New York, 2000. |
| [1] | (c) Sewald, N.; Jakubke, H. D. Peptides: Chemistry and Biology, Wiley-VCH, Weinheim, Germany, 2002. |
| [1] | (d) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731. |
| [1] | (e) Aubé, J. Angew. Chem., Int. Ed. 2012, 51, 3063. |
| [2] | (a) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899. |
| [2] | (b) Sato, T.; Yoritate, M.; Tajima, H.; Chida, N. Org. Biomol. Chem. 2018, 16, 3864. |
| [2] | (c) Huang, P.-Q. Acta Chim. Sinica 2018, 76, 357. (in Chinese) |
| [2] | (黄培强, 化学学报, 2018, 76, 357.) |
| [2] | (d) Czerwiński, P. J.; Furman, B. Trends Chem. 2020, 2, 782. |
| [2] | (e) Czerwinski, P. J.; Furman, B. Front. Chem. 2021, 9, 655849. |
| [3] | (a) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010, 49, 3037. |
| [3] | (b) Seebach, D. Angew. Chem., Int. Ed. 2011, 50, 96. |
| [3] | (c) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697. |
| [3] | (d) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421. |
| [4] | (a) Smith, A. M.; Whyman, R. Chem. Rev. 2014, 114, 5477. |
| [4] | (b) Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chem. Soc. Rev. 2016, 45, 6685. |
| [4] | (c) Blanchet, J.; Chardon, A.; Morisset, E.; Rouden, J. Synthesis 2018, 50, 984. |
| [4] | (d) Matheau-Raven, D.; Gabriel, P.; Leitch, J. A.; Almehmadi, Y. A.; Yamazaki, K.; Dixon, D. J. ACS Catal. 2020, 10, 8880. |
| [4] | (e) Ong, D. Y.; Chen, J.-h.; Chiba, S. Bull. Chem. Soc. Jpn. 2020, 93, 1339. |
| [4] | (f) Tahara, A.; Nagashima, H. Tetrahedron Lett. 2020, 61, 151423. |
| [4] | (g) Cabrero-Antonino, J. R.; Adam, R.; Papa, V.; Beller, M. Nat. Commun. 2020, 11, 3893. |
| [5] | (a) Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 9511. |
| [5] | (b) Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79. |
| [5] | (c) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413. |
| [5] | (d) Hu, J.; Wang, M.; Pu, X.; Shi, Z. Nat. Commun. 2017, 8, 14993. |
| [5] | (e) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864. |
| [5] | (f) Shi, S.; Nolan, S. P.; Szostak, M. Acc. Chem. Res. 2018, 51, 2589. |
| [5] | (g) Ronson, T. O.; Renders, E.; Van Steijvoort, B. F.; Wang, X.; Wybon, C. C. D.; Prokopcova, H.; Meerpoel, L.; Maes, B. U. W. Angew. Chem., Int. Ed. 2019, 58, 482. |
| [5] | (h) Zhou, T.; Ji, C. L.; Hong, X.; Szostak, M. Chem. Sci. 2019, 10, 9865. |
| [5] | (i) Li, G.; Ma, S.; Szostak, M. Trends Chem. 2020, 2, 914. |
| [5] | (j) Powell, W. C.; Evenson, G. E.; Walczak, M. A. ACS Catal. 2022, 12, 7789. |
| [6] | (a) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574. |
| [6] | (b) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J. Chem.-Eur. J. 2015, 21, 111. |
| [6] | (c) Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem., Int. Ed. 2017, 56, 3655. |
| [6] | (d) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696. |
| [6] | (e) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246. |
| [6] | (f) Huang, P.-Q.; Ou, W.; Han, F. Chem. Commun. 2016, 52, 11967. |
| [6] | (g) Ou, W.; Han, F.; Hu, X.-N.; Chen, H.; Huang, P.-Q. Angew. Chem., Int. Ed. 2018, 57, 11354. |
| [6] | (h) Chen, D.-H.; Sun, W.-T.; Zhu, C.-J.; Lu, G.-S.; Wu, D.-P.; Wang, A.-E.; Huang, P.-Q. Angew. Chem., Int. Ed. 2021, 60, 8827. |
| [6] | (i) Chen, H.; Wu, Z.-Z.; Shao, D.-Y.; Huang, P.-Q. Sci. Adv. 2022, eade3431. |
| [7] | Sun, W.; Wang, L.; Hu, Y.; Wu, X.; Xia, C.; Liu, C. Nat. Commun. 2020, 11, 3113. |
| [8] | (a) Kagan, H. B.; Namy, J. L. Tetrahedron 1986, 42, 6573. |
| [8] | (b) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307. |
| [8] | (c) Nicolaou, K. C.; Ellery, S. P.; Chen, J. Angew. Chem., Int. Ed. 2009, 48, 7140. |
| [8] | (d) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371. |
| [8] | (e) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238. |
| [8] | (f) Gopalaiah, K.; Kagan, H. B. Chem. Rec. 2013, 13, 187. |
| [8] | (g) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc. Rev. 2013, 42, 9155. |
| [8] | (h) Szostak, M.; Fazakerley, N.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114, 5959. |
| [9] | (a) Owaga, A.; Takami, N.; Sekiguchi, M.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114, 8730. |
| [9] | (b) Ogawa, A.; Nanke, T.; Takami, N.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Appl. Organomet. Chem. 1995, 9, 461. |
| [9] | (c) Ogawa, A.; Takami, N.; Nanke, T.; Ohya, S.; Hirao, T.; Sonoda, N. Tetrahedron 1997, 53, 12895. |
| [10] | (a) Just-Baringo, X.; Procter, D. J. Acc. Chem. Res. 2015, 48, 1263. |
| [10] | (b) Parmar, D.; Duffy, L. A.; Sadasivam, D. V.; Matsubara, H.; Bradley, P. A.; Flowers II, R. A.; Procter, D. J. J. Am. Chem. Soc. 2009, 131, 15467. |
| [10] | (c) Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 2268. |
| [10] | (d) Szostak, M.; Spain, M.; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 8459. |
| [10] | (e) Huq, S. R.; Shi, S.; Diao, R.; Szostak, M. J. J. Org. Chem. 2017, 82, 6528. |
| [10] | (f) Péter, á.; Crisenza, G. E. M.; Procter, D. J. J. Am. Chem. Soc. 2022, 144, 7457. |
| [11] | (a) Jiao, J.; Wang, X. Angew. Chem., Int. Ed. 2021, 60, 17088. |
| [11] | (b) He, Y.; Wang, Y.; Li, S.-J.; Lan, Y.; Wang, X. Angew. Chem., Int. Ed. 2022, e202115497. |
| [11] | (c) Wang, Y.; Shao, Y.; Xue, X.; Wang, X. Cell Rep. Phys. Sci. 2022, 3, 101116. |
| [11] | For a highlight, see: (d) Wang, A.-E. H., P.-Q. Chin. J. Org. Chem. 2021, 41, 3738. (in Chinese) |
| [11] | (王爱娥, 黄培强, 有机化学, 2021, 41, 3738.) |
| [12] | (a) Matteson, D. S. Tetrahedron 1989, 45, 1859. |
| [12] | (b) Barluenga, J.; Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Nat. Chem. 2009, 1, 494. |
| [12] | (c) Peng, C.; Zhang, W.; Yan, G.; Wang, J. Org. Lett. 2009, 11, 1667. |
| [12] | (d) Capriati, V.; Florio, S. Chem.-Eur. J. 2010, 16, 4152. |
| [12] | (e) Li, H.; Zhang, Y.; Wang, J. Synthesis 2013, 45, 3090. |
| [12] | (f) Leonori, D.; Aggarwal, V. K.; Acc. Chem. Res. 2014, 47, 3174. |
| [12] | (g) Watson, C. G.; Unsworth, P. J.; Leonori, D.; Aggarwal, V. K. Lithium-Boron Chemistry: A Synergistic Strategy in Modern Synthesis, Eds.: Luisi, R.; Capriati, V., Wiley-VCH, Weinheim, 2014, pp. 397-422. |
| [12] | (h) Valdés, C.; Paraja, M.; Plaza, M. Synlett 2017, 28, 2373. |
| [12] | (i) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257. |
| [12] | (j) Wang, J. Pure Appl. Chem. 2018, 90, 617. |
| [12] | (k) Zhu, Q.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2021, 41, 661. (in Chinese) |
| [12] | (朱庆, 夏春谷, 刘超, 有机化学, 2021, 41, 661.) |
| [13] | (a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375. |
| [13] | (b) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063. |
| [13] | (c) Brook, M. Silicon in Organic, Organometallic and Polymer Chemistry, Wiley, New York, 2000. |
| [13] | (d) Showell, G. A.; Mills, J. S. Drug Discovery Today 2003, 8, 551. |
| [13] | (e) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388. |
| [13] | (f) Ramesh, R.; Reddy, D. S. J. Med. Chem. 2018, 61, 3779. |
| [14] | (a) Kim, J.; Hewitt, G.; Carroll, P.; Sieburth, S. M. J. Org. Chem. 2005, 70, 5781. |
| [14] | (b) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. 2007, 72, 10035. |
| [14] | (c) Nielsen, L.; Skrydstrup, T. J. Am. Chem. Soc. 2008, 130, 13145. |
| [14] | (d) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. |
| [14] | (e) Madsen, J. L. H.; Andersen, T. L.; Santamaria, S.; Nagase, H.; Enghild, J. J.; Skrydstrup, T. J. Med. Chem. 2012, 55, 7900. |
| [14] | (f) Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Chem. Rev. 2016, 116, 11654. |
| [14] | (g) Madsen, J. L.; Hjorringgaard, C. U.; Vad, B. S.; Otzen, D.; Skrydstrup, T. Chem.-Eur. J. 2016, 22, 8358. |
| [15] | (a) Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1638. |
| [15] | (b) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400. |
| [16] | (a) Buynak, J. D.; Geng, B. Organometallics 1995, 14, 3112. |
| [16] | (b) Sieburth, S. M.; Somers, J. J.; O'Hare, H. K. Tetrahedron 1996, 52, 5669. |
| [16] | (c) Barberis, C.; Voyer, N. Tetrahedron Lett. 1998, 39, 6807. |
| [16] | (d) Sieburth, S. M.; O'Hare, H. K.; Xu, J.; Chen, Y.; Liu, G. Org. Lett. 2003, 5, 1859. |
| [17] | (a) Mutahi, M. w.; Nittoli, T.; Guo, L.; Sieburth, S. M. J. Am. Chem. Soc. 2002, 124, 7363. |
| [17] | (b) Ballweg, D. M.; Miller, R. C.; Gray, D. L.; Scheidt, K. A. Org. Lett. 2005, 7, 1403. |
| [17] | (c) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. 2007, 72, 10035. |
| [17] | (d) Hernández, D.; Nielsen, L.; Lindsay, K. B.; ángeles López- García, M.; Bjerglund, K.; Skrydstrup, T. Org. Lett. 2010, 12, 3528. |
| [17] | (e) Bo, Y.; Singh, S.; Duong, H. Q.; Cao, C.; Sieburth, S. M. Org. Lett. 2011, 13, 1787. |
| [17] | (f) Singh, S.; Sieburth, S. M. Org. Lett. 2012, 14, 4422. |
| [17] | (g) Min, G. K.; Hernández, D.; Skrydstrup, T. Acc. Chem. Res. 2013, 46, 457. |
| [17] | (h) Madsen, J. L.; Hjorringgaard, C. U.; Vad, B. S.; Otzen, D.; Skrydstrup, T. Chem.-Eur. J. 2016, 22, 8358. |
| [18] | (a) Vyas, D. J.; Fr?hlich, R.; Oestreich, M. Org. Lett. 2011, 13, 2094. |
| [18] | (b) Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 4964. |
| [18] | (c) Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028. |
| [18] | (d) Zhao, C.; Jiang, C.; Wang, J.; Wu, C.; Zhang, Q.-W.; He, W. Asian J. Org. Chem. 2014, 3, 851. |
| [18] | (e) Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. Org. Chem. Front. 2016, 3, 1725. |
| [18] | (f) Feng, J. J.; Oestreich, M. Org. Lett. 2018, 20, 4273. |
| [18] | (g) Feng, J. J.; Mao, W.; Zhang, L.; Oestreich, M. Chem. Soc. Rev. 2021, 50, 2010. |
| [18] | (h) Xue, W.; Oestreich, M. ACS Cent. Sci. 2020, 6, 1070. |
| [19] | Yu, X.; Daniliuc, C. G.; Alasmary, F. A.; Studer, A. Angew. Chem., Int. Ed. 2021, 60, 23335. |
| [20] | Jiao, J.; Yang, W.; Wang, X. J. Org. Chem. 2023, 88, 1594. |
| [21] | (a) He, Y.; Wang, X. Org. Lett. 2021, 23, 225. |
| [21] | (b) Li, Z.; Zhao, F.; Ou, W.; Huang, P.-Q.; Wang, X. Angew. Chem., Int. Ed. 2021, 60, 26604. |
| [21] | (c) Jiang, F.; Zhao, F.; He, Y.; Luo, X.; Wang, X. Cell Rep. Phys. Sci. 2022, 3, 100955. |
| [21] | (d) Zhao, F.; Jiang, F.; Wang, X. Sci. China Chem. 2022, 65, 2231. |
| [22] | Zhou, L.; Qiu, J.; Wang, C.; Zhang, F.; Yang, K.; Song, Q. Org. Lett. 2022, 24, 3249. |
| [23] | (a) Machrouhi, F.; Hamann, B.; Namy, J.-L.; Kagan, H. B. Synlett 1996, 633. |
| [23] | (b) Machrouhi, F.; Namy, J.-L. Tetrahedron Lett. 1999, 40, 1315. |
| [23] | (c) Dahlén, A.; Hilmersson, G. Eur. Inorg. Chem. 2004, 3393. |
| [23] | (d) Flowers II, R. A. Synlett 2008, 10, 1427. |
| [23] | (e) Szostak, M.; Spain, M.; Parmar, D.; Procter, D. J. Chem. Commun. 2012, 48, 330. |
| [24] | (a) Shabangi, M.; Flowers II, R. A. Tetrahedron Lett. 1997, 38, 1137. |
| [24] | (b) Shabangi, M.; Sealy, J. M.; Fuchs, J. R.; Flowers II, R. A. Tetrahedron Lett. 1998, 39, 4429. |
| [24] | (c) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238. |
| [24] | (d) Boyd, E. A.; Peters, J. C. J. Am. Chem. Soc. 2022, 144, 21337. |
/
| 〈 |
|
〉 |