综述与进展

手性烯丙基硅烷的催化对映选择性合成

  • 匡鑫 ,
  • 丁昌华 ,
  • 吴奕晨 ,
  • 王鹏
展开
  • a 上海大学理学院 上海 201900
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
    c 中国科学院上海有机化学研究所 中国科学院能量调控材料重点实验室 上海 200032
    d 中国科学院大学杭州高等研究院 化学与材料科学学院 杭州 310024

收稿日期: 2023-04-21

  修回日期: 2023-05-11

  网络出版日期: 2023-05-25

基金资助

国家重点研发计划(2021YFA1500200); 国家自然科学基金(22101291); 国家自然科学基金(22171277); 国家自然科学基金(21821002); 上海“启明星”(20QA1411400)

Catalytic Enantioselective Preparation of Chiral Allylsilanes

  • Xin Kuang ,
  • Changhua Ding ,
  • Yichen Wu ,
  • Peng Wang
Expand
  • a College of Science, Shanghai University, Shanghai 201900
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    d School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024

Received date: 2023-04-21

  Revised date: 2023-05-11

  Online published: 2023-05-25

Supported by

National Key R&D Program of China(2021YFA1500200); National Natural Science Foundation of China(22101291); National Natural Science Foundation of China(22171277); National Natural Science Foundation of China(21821002); Shanghai Rising-Star Program(20QA1411400)

摘要

手性烯丙基硅烷作为多功能试剂被广泛应用于不对称合成中, 因而, 发展高效的方法构建该类化合物受到了大家的广泛关注. 伴随着不对称催化领域的快速发展, 催化不对称合成手性烯丙基硅烷已经取得了重要的进展. 详细总结了手性烯丙基硅烷催化不对称合成的进展, 并展示了其在有机合成中的应用.

本文引用格式

匡鑫 , 丁昌华 , 吴奕晨 , 王鹏 . 手性烯丙基硅烷的催化对映选择性合成[J]. 有机化学, 2023 , 43(10) : 3367 -3387 . DOI: 10.6023/cjoc202304030

Abstract

Chiral allylsilanes, a versatile linchpin, are widely used in the area of asymmetric synthesis. Therefore, the development of efficient methodologies for the preparation of the enantioenriched allylsilanes has attracted great attention. Significant advances have been made in the catalytic enantioselective preparation of chiral allylsilanes by virtue of the rapid developments in asymmetric catalysis. The advances in the construction of chiral allylsilanes and their synthetic applications are summarized.

参考文献

[1]
(a) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
[1]
(b) Yamamoto Y.; Asao N. Chem. Rev. 1993, 93, 2207.
[1]
(c) Chabaud L.; James P.; Landais Y. Eur. J. Org. Chem. 2004, 2004, 3173.
[2]
Auner N.; Weis J. Organosilicon Chemistry V: From Molecules to Materials, Wiley-VCH, Weinheim, Germany, 2004.
[3]
(a) Showell G. A.; Mills J. S. Drug Discovery Today 2003, 8, 551.
[3]
(b) Min G. K.; Hernández D.; Skrydstrup T. Acc. Chem. Res. 2013, 46, 457.
[3]
(c) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
[4]
(a) Chan T. H.; Wang D. Chem. Rev. 1992, 92, 995.
[4]
(b) Fleming I.; Barbero A.; Walter D. Chem. Rev. 1997, 97, 2063.
[4]
(c) Masse C. E.; Panek J. S. Chem. Rev. 1995, 95, 1293.
[5]
(a) Kira M.; Kobayashi M.; Sakurai H. Tetrahedron Lett. 1987, 28, 4081.
[5]
(b) Kira M.; Sato K.; Sakurai H. J. Am. Chem. Soc. 1990, 112, 257.
[5]
(c) Hosomi A.; Endo M.; Sakurai H. Chem. Lett. 1976, 5, 941.
[6]
Chan T. H.; Fleming I. Synthesis 1979, 761.
[7]
(a) Sarkar T. K. Synthesis 1990, 969.
[7]
(b) Sarkar T. K. Synthesis 1990, 1101.
[8]
Bhushan V.; Lohray B. B.; Enders D. Tetrahedron Lett. 1993, 34, 5067.
[9]
(a) Fleming I.; Thomas A. P. J. Chem. Soc., Chem. Commun. 1986, 1456.
[9]
(b) Buckle M. J. C.; Fleming I. Tetrahedron Lett. 1993, 34, 2383.
[10]
(a) Mikami K.; Maeda T.; Kishi N.; Nakai T. Tetrahedron Lett. 1984, 25, 5151.
[10]
(b) Sparks M. A.; Panek J. S. J. Org. Chem. 1991, 56, 3431.
[11]
(a) Landais Y.; Planchenault D.; Weber V. Tetrahedron Lett. 1994, 35, 9549.
[11]
(b) Bulugahapitiya P.; Landais Y.; Parra-Rapado L.; Planchenault D.; Weber V. J. Org. Chem. 1997, 62, 1630.
[12]
(a) Bourque L. E.; Cleary P. A.; Woerpel K. A. J. Am. Chem. Soc. 2007, 129, 12602.
[12]
(b) Hayashi S.; Hirano K.; Yorimitsu H.; Oshima K. J. Am. Chem. Soc. 2007, 129, 12650.
[12]
(c) Li D.; Tanaka T.; Ohmiya H.; Sawamura M. Org. Lett. 2010, 12, 3344.
[12]
(d) Nagao K.; Yokobori U.; Makida Y.; Ohmiya H.; Sawamura M. J. Am. Chem. Soc. 2012, 134, 8982.
[12]
(e) Yasuda Y.; Nagao K.; Shido Y.; Mori S.; Ohmiya H.; Sawamura M. Chem.-Eur. J. 2015, 21, 9666.
[13]
(a) Suginome M.; Ohmura T.; Miyake Y.; Mitani S.; Ito Y.; Murakami M. J. Am. Chem. Soc. 2003, 125, 11174.
[13]
(b) Ohmura T.; Suginome M. Org. Lett. 2006, 8, 2503.
[14]
Hayashi T.; Konishi M.; Ito H.; Kumada M. J. Am. Chem. Soc. 1982, 104, 4962.
[15]
(a) Hayashi T. Acc. Chem. Res. 2000, 33, 354.
[15]
(b) Gibson S. E.; Rudd M. Adv. Synth. Catal. 2007, 349, 781.
[15]
(c) Han J. W.; Hayashi T. Tetrahedron: Asymmetry 2010, 21, 2193.
[15]
(d) Wilkinson J. R.; Nuyen C. E.; Carpenter T. S.; Harruff S. R.; Van Hoveln R. ACS Catal. 2019, 9, 8961.
[16]
Hayashi T.; Kabeta K.; Yamamoto T.; Tamao K.; Kumada M. Tetrahedron Lett. 1983, 24, 5661.
[17]
Hayashi T.; Matsumoto Y.; Morikawa I.; Ito Y. Tetrahedron: Asymmetry 1990, 1, 151.
[18]
Ohmura H.; Matsuhashi H.; Tanaka M.; Kuroboshi M.; Hiyama T.; Hatanaka Y.; Goda K. J. Organomet. Chem. 1995, 499, 167.
[19]
(a) Okada T.; Morimoto T.; Achiwa K. Chem. Lett. 1990, 19, 999.
[19]
(b) Sakuraba S.; Okada T.; Morimoto T.; Achiwa K. Chem. Pharm. Bull. 1995, 43, 927.
[20]
Marinetti A. Tetrahedron Lett. 1994, 35, 5861.
[21]
Hayashi T.; Han Jin, W.; Takeda A.; Tang T.; Nohmi K.; Mukaide K.; Tsuji H.; Uozumi Y. Adv. Synth. Catal. 2001, 343, 279.
[22]
Han J. W.; Hayashi T. Tetrahedron: Asymmetry 2002, 13, 325.
[23]
Park H. S.; Han J. W.; Shintani R.; Hayashi T. Tetrahedron: Asymmetry 2013, 24, 418.
[24]
Hayashi T.; Kabeta K. Tetrahedron Lett. 1985, 26, 3023.
[25]
Han J. W.; Tokunaga N.; Hayashi T. Helv. Chim. Acta 2002, 85, 3848.
[26]
Hatanaka Y.; Goda K.; Yamashita F.; Hiyama T. Tetrahedron Lett. 1994, 35, 7981.
[27]
Sang H.-L.; Yu S.; Ge S. Chem. Sci. 2018, 9, 973.
[28]
Wen H.; Wang K.; Zhang Y.; Liu G.; Huang Z. ACS Catal. 2019, 9, 1612.
[29]
Huang Y.-H.; Wu Y.; Zhu Z.; Zheng S.; Ye Z.; Peng Q.; Wang P. Angew. Chem., Int. Ed. 2022, 61, e202113052.
[30]
Wang L.; Lu W.; Zhang J.; Chong Q.; Meng F. Angew. Chem., Int. Ed. 2022, 61, e202205624.
[31]
Li K.; Nie M.; Tang W. Green Synth. Catal. 2020, 1, 171.
[32]
Xu J.-L.; Xu Z.-Y.; Wang Z.-L.; Ma W.-W.; Sun X.-Y.; Fu Y.; Xu Y.-H. J. Am. Chem. Soc. 2022, 144, 5535.
[33]
Li S.; Xu J.-L.; Xu Y.-H. Org. Lett. 2022, 24, 6054.
[34]
Liu T.; Mao X.-R.; Song S.; Chen Z.-Y.; Wu Y.; Xu L.-P.; Wang P. Angew. Chem., Int. Ed. 2023, 62, e202216878.
[35]
Chang X.; Ma P.-L.; Chen H.-C.; Li C.-Y.; Wang P. Angew. Chem., Int. Ed. 2020, 59, 8937.
[36]
Matsumoto Y.; Ohno A.; Hayashi T. Organometallics 1993, 12, 4051.
[37]
Hayashi T.; Ohno A.; Lu S.; Matsumoto Y.; Fukuyo E.; Yanagi K. J. Am. Chem. Soc. 1994, 116, 4221.
[38]
Delvos L. B.; Vyas D. J.; Oestreich M. Angew. Chem., Int. Ed. 2013, 52, 4650.
[39]
McQuade D.; Park J. Synthesis 2012, 44, 1485.
[40]
Oestreich M.; Delvos L.; Hensel A. Synthesis 2014, 46, 2957.
[41]
Oestreich M.; Delvos L. Synthesis 2015, 47, 924.
[42]
Takeda M.; Shintani R.; Hayashi T. J. Org. Chem. 2013, 78, 5007.
[43]
Hensel A.; Oestreich M. Chem.-Eur. J. 2015, 21, 9062.
[44]
(a) Morizawa Y.; Oda H.; Oshima K.; Nozaki H. Tetrahedron Lett. 1984, 25, 1163.
[44]
(b) Weickgenannt A.; Oestreich M. Chem.-Eur. J. 2010, 16, 402.
[45]
(a) Bobek M.; Kavai I.; De Clercq E. J. Med. Chem. 1987, 30, 1494.
[45]
(b) Leriche C.; He X.; Chang C.-W. T.; Liu H.-W. J. Am. Chem. Soc. 2003, 125, 6348.
[45]
(c) Lamy C.; Hofmann J.; Parrot-Lopez H.; Goekjian P. Tetrahedron Lett. 2007, 48, 6177.
[45]
(d) Juncosa J. I.; Takaya K.; Le H. V.; Moschitto M. J.; Weerawarna P. M.; Mascarenhas R.; Liu D.; Dewey S. L.; Silverman R. B. J. Am. Chem. Soc. 2018, 140, 2151.
[46]
Paioti P. H. S.; Del Pozo J.; Mikus M. S.; Lee J.; Koh M. J.; Romiti F.; Torker S.; Hoveyda A. H. J. Am. Chem. Soc. 2019, 141, 19917.
[47]
Gao P.; Gao L.; Xi L.; Zhang Z.; Li S.; Shi Z. Org. Chem. Front. 2020, 7, 2618.
[48]
Hayashi T.; Iwamura H.; Uozumi Y. Tetrahedron Lett. 1994, 35, 4813.
[49]
Kacprzynski M. A.; May T. L.; Kazane S. A.; Hoveyda A. H. Angew. Chem., Int. Ed. 2007, 46, 4554.
[50]
Shintani R.; Takatsu K.; Takeda M.; Hayashi T. Angew. Chem., Int. Ed. 2011, 50, 8656.
[51]
Jung B.; Hoveyda A. H. J. Am. Chem. Soc. 2012, 134, 1490.
[52]
Shido Y.; Yoshida M.; Tanabe M.; Ohmiya H.; Sawamura M. J. Am. Chem. Soc. 2012, 134, 18573.
[53]
Hayashi T.; Konishi M.; Okamoto Y.; Kabeta K.; Kumada M. J. Org. Chem. 1986, 51, 3772.
[54]
(a) Gu J.; Wang X.; Xue W.; Gong H. Org. Chem. Front. 2015, 2, 1411.
[54]
(b) Wang X.; Dai Y.; Gong H. Top. Curr. Chem. 2016, 374, No. 43.
[54]
(c) Pang X.; Shu X.-Z. Chem.-Eur. J. 2023, 29, e202203362.
[55]
Hofstra J. L.; Cherney A. H.; Ordner C. M.; Reisman S. E. J. Am. Chem. Soc. 2018, 140, 139.
[56]
Levi Knippel J.; Ni A. Z.; Schuppe A. W.; Buchwald S. L. Angew. Chem., Int. Ed. 2022, 61, e202212630.
[57]
Bagheri V.; Doyle M. P.; Taunton J.; Claxton E. E. J. Org. Chem. 1988, 53, 6158.
[58]
Davies H. M. L.; Hansen T.; Rutberg J.; Bruzinski P. R. Tetrahedron Lett. 1997, 38, 1741.
[59]
Sambasivan R.; Ball Z. T. J. Am. Chem. Soc. 2010, 132, 9289.
[60]
Chen D.; Zhang X.; Qi W.-Y.; Xu B.; Xu M.-H. J. Am. Chem. Soc. 2015, 137, 5268.
[61]
Chen D.; Zhu D.-X.; Xu M.-H. J. Am. Chem. Soc. 2016, 138, 1498.
[62]
Wu J.; Chen Y.; Panek J. S. Org. Lett. 2010, 12, 2112.
[63]
Wu J.; Panek J. S. J. Org. Chem. 2011, 76, 9900.
[64]
Lee K.; Hoveyda A. H. J. Am. Chem. Soc. 2010, 132, 2898.
[65]
Lee K.; Wu H.; Haeffner F.; Hoveyda A. H. Organometallics 2012, 31, 7823.
[66]
Mita T.; Sugawara M.; Saito K.; Sato Y. Org. Lett. 2014, 16, 3028.
[67]
Da B.-C.; Liang Q.-J.; Luo Y.-C.; Ahmad T.; Xu Y.-H.; Loh T.-P. ACS Catal. 2018, 8, 6239.
[68]
Meng F.-F.; Xie J.-H.; Xu Y.-H.; Loh T.-P. ACS Catal. 2018, 8, 5306.
[69]
Wang X.-L.; Yin X.-H.; Xiao J.-Z.; Jia X.-S.; Yin L. Chin. J. Chem. 2021, 39, 1916.
[70]
Gerdin M.; Moberg C. Adv. Synth. Catal. 2005, 347, 749.
[71]
Ohmura T.; Taniguchi H.; Suginome M. J. Am. Chem. Soc. 2006, 128, 13682.
[72]
Saito N.; Kobayashi A.; Sato Y. Angew. Chem., Int. Ed. 2012, 51, 1228.
[73]
Ogoshi S.; Tonomori K.; Oka M.; Kurosawa H. J. Am. Chem. Soc. 2006, 128, 7077.
[74]
Han S. B.; Gao X.; Krische M. J. J. Am. Chem. Soc. 2010, 132, 9153.
[75]
Zhang Y.; Huang J.; Guo Y.; Li L.; Fu Z.; Huang W. Angew. Chem., Int. Ed. 2018, 57, 4594.
[76]
(a) Nakao Y.; Imanaka H.; Sahoo A. K.; Yada A.; Hiyama T. J. Am. Chem. Soc. 2005, 127, 6952.
[76]
(b) Nakao Y.; Sahoo A.; Yada A.; Chen J.; Hiyama T. Sci. Technol. Adv. Mater. 2006, 7, 536.
[76]
(c) Nakao Y.; Imanaka H.; Chen J.; Yada A.; Hiyama T. J. Organomet. Chem. 2007, 692, 585.
[77]
Shintani R.; Ichikawa Y.; Hayashi T.; Chen J.; Nakao Y.; Hiyama T. Org. Lett. 2007, 9, 4643.
文章导航

/