(S)-(–)-Xylopinine和(S)-(+)-Laudanosine的不对称合成
收稿日期: 2023-04-25
修回日期: 2023-05-19
网络出版日期: 2023-05-25
基金资助
广东省教育厅基金(2021KCXTD044)
四氢原小檗碱家族天然产物具有较好的生物活性, 其中xylopinine具有良好的抗疟疾活性, laudanosine则具有癫痫治疗活性. 报道了一种不对称合成( S)-(–)-xylopinine和( S)-(+)-laudanosine的策略. 该策略主要通过叔丁基亚磺酰亚胺发生非对映选择性1,2-加成, 并结合分子内Pictet-Spengler反应为关键步骤, 完成了四氢原小檗碱的分子骨架构建. 依据此策略, 从已知原料3,4-二甲氧基苯乙酸出发, 经7步反应分别以11.1%和16.4%的总收率完成了( S)-(–)-xylo- pinine和( S)-(+)-laudanosine的简洁、快速不对称合成. 通过对比xylopinine之间的比旋光度和laudanosine之间的比旋光度, 可以证明所合成的两个天然产物C(14)均为 S构型.
关键词: xylopinine; laudanosine; 叔丁基亚磺酰胺; 非对映选择性加成
张俊杰 , 徐学涛 . (S)-(–)-Xylopinine和(S)-(+)-Laudanosine的不对称合成[J]. 有机化学, 2023 , 43(9) : 3297 -3303 . DOI: 10.6023/cjoc202304032
Tetrahydroprotoberberine alkaloids have good bioactivity against malaria and epilepsy, among them, xylopinine has good anti malaria activity, while laudanosine has epilepsy treatment activity. A concise asymmetric synthesis of ( S)-(–)- xylopinine and ( S)-(+)-laudanosine has been reported. The key strategies include diastereoselective nucleophilic addition to N-tert-butanesulfinimine, which is combined with Pictet-Spengler reaction as a key step for constructing the pivotal tetrahydroprotoberberine skeleton. This strategy provides a concise and rapid approach to ( S)-(–)-xylopinine (7 steps and 11.1% overall yield) and ( S)-(+)-laudanosine (7 steps and 16.4% overall yield) from known starting materials. The S configuration of synthetic xylopinine and laudanosine at C(14) is confirmed by comparing their specific rotation data.
Key words: xylopinine; laudanosine; N-tert-butanesulfinimine; asymmetric addition
| [1] | (a) Manske R.; Ashford W. R. Alkaloids 1954, 4, 77. |
| [1] | (b) Jeffs P. W. The Alkaloids: Chemistry and Physiology, Vol. 9, Academic Press, New York, 1967, p. 41. |
| [2] | Da-Cunha E. V. L.; Fechine I. M.; Guedes D. N.; Barbosa-Filho J. M.; Silva M. S. The Alkaloids: Chemistry and Biology, Vol. 62, Academic Press, New York, 2005, p. 1. |
| [3] | Abadi B. E. A.; Moss D. S.; Palmer R. A. J. Crystallogr. Spectrosc. Res. 1984, 14, 269. |
| [4] | Guo D.; Li J.; Lin H.; Zhou Y.; Chen Y.; Zhao F.; Sun H.; Zhang D.; Li H.; Shoichet B. K.; Shan L.; Zhang W.; Xie X.; Jiang H.; Liu H. J. Med. Chem. 2016, 59, 9489. |
| [5] | Schmutz J. Helv. Chim. Acta. 1959, 42, 335. |
| [6] | Corrodi H.; Hardegger E. Helv. Chim. Acta 1956, 39, 889. |
| [7] | (a) Meyers A. L.; Dickman D. A.; Boes M. Tetrahedron 1987, 43, 5095. |
| [7] | (b) Munchhof M. J.; Meyers A. I. J. Org. Chem. 1996, 61, 4607. |
| [7] | (c) Comins D. L.; Thakker P. M.; Baevsky M. F.; Badawi M. M. Tetrahedron 1997, 53, 16327. |
| [7] | (d) Davis F. A.; Mohanty P. K. J. Org. Chem. 2002, 67, 1290. |
| [7] | (e) Mujahidin D.; Doye S. Eur. J. Org. Chem. 2005, 2005, 2689. |
| [7] | (f) Mastranzo V. M.; Yuste F.; Ortiz B.; Obregon R. S.; Toscano R. A.; Ruano J. L. G. J. Org. Chem. 2011, 76, 5036. |
| [7] | (g) Xie J.; Yan P.; Zhang Q.; Yuan K.; Zhou Q. ACS Catal. 2012, 2, 561. |
| [7] | (h) Benmekhbi L.; Louafi, F.; Roisnel T.; Hurvois, J. P. J. Org. Chem. 2016, 81, 6721. |
| [7] | (i) Yu J.; Zhang Z.; Zhou S.; Zhang W.; Tong R. Org. Chem. Front. 2018, 5, 242. |
| [7] | (n) Li W.; Jiang M.; Chen W.; Chen Y.; Yang Z.; Tang P.; Chen F. J. Org. Chem. 2021, 86, 8143. |
| [8] | Li Y.; Ma Z.; Xu X. Chin. J. Org. Chem. 2020, 40, 3991. (in Chinese) |
| [8] | ( 李颖, 马志强, 徐学涛, 有机化学, 2020, 40, 3991.) |
| [9] | Li Y.; Wang C.; Ma Z.; Zhang K.; Xu X. Org. Lett. 2020, 22, 8589. |
| [10] | Chuang K. V.; Navarro R.; Reisman S. E. Chem. Sci. 2011, 2, 1086. |
| [11] | Zhao Y.; Gu P.; Tu Y.; Zhang H.; Zhang Q.; Fan C. J. Org. Chem. 2010, 75, 5289. |
| [12] | Henry M. C.; Sutherland A. Org. Lett. 2020, 22, 2766. |
| [13] | Momoi Y.; Okuyama K. I.; Toya H.; Sugimoto K.; Okano K.; Tokuyama H. Angew. Chem., Int. Ed. 2014, 53, 13215. |
| [14] | Pedrosa R.; Andres C.; Iglesias J. M. J. Org. Chem. 2001, 66, 243. |
/
| 〈 |
|
〉 |