综述与进展

氮杂螺[4.5]三烯酮衍生物的合成研究进展

  • 唐菁 ,
  • 罗文坤 ,
  • 周俊
展开
  • 长沙理工大学化学化工学院 电力与交通材料保护湖南省重点实验室 细胞化学湖南省重点实验室 长沙 410114

收稿日期: 2023-04-04

  修回日期: 2023-05-10

  网络出版日期: 2023-06-07

基金资助

国家自然科学基金(21801023); 长沙市科技局项目(kq2004070); 湖南省教育厅自然科学基金(22B0339); 湖南省教育厅自然科学基金(22C0160)

Advances in the Synthesis of Azaspiro[4.5]trienones

  • Jing Tang ,
  • Wenkun Luo ,
  • Jun Zhou
Expand
  • Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Techonolgy, Changsha 410114

Received date: 2023-04-04

  Revised date: 2023-05-10

  Online published: 2023-06-07

Supported by

National Natural Science Foundation of China(21801023); Changsha Municipal Science and Technology Project(kq2004070); Scientific Research Fund of Hunan Provincial Education Department(22B0339); Scientific Research Fund of Hunan Provincial Education Department(22C0160)

摘要

氮杂螺[4.5]三烯酮衍生物作为一种广泛存在于天然产物和活性药物成分中的重要结构单元, 由于其具有优异的结构性能和生物活性, 在有机合成领域得到了广泛应用. 近年来, 通过过渡金属参与、可见光促进、无过渡金属参与和电化学促进等几种方法, 高效构建了含各种官能团的氮杂螺[4.5]三烯酮衍生物. 综述了氮杂螺[4.5]三烯酮合成的最新研究进展, 并对代表性底物及反应机理进行了归纳和讨论.

本文引用格式

唐菁 , 罗文坤 , 周俊 . 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023 , 43(9) : 3006 -3034 . DOI: 10.6023/cjoc202304004

Abstract

As one of the most important structural motifs in natural compounds and active pharmaceutical ingredients, aza- spiro[4.5]trienones derivatives have been widely used in the field of organic synthesis due to their excellent structural properties and biological activities. In recent years, several methods, such as transition metal involvement, visible light promotion, transition metal-free involvement and electrochemical promotion, have been used to efficiently construct various functional groups of azaspiro[4.5]trienones. The recent advances in the synthesis of azaspiro[4.5]trienones are reviewed, and the representative substrates and reaction mechanisms are summarized and discussed.

参考文献

[1]
(a) Yugandhar D.; Nayak V.-L.; Archana S.; Shekar K.-C.; Srivastava A.-K. Eur. J. Med. Chem. 2015, 101, 348.
[1]
(b) Ghoshal A.; Kumar A.; Yugandhar D.; Sona C.; Kuriakose S.; Nagesh K.; Rashid M.; Singh S.-K.; Wahajuddin M.; Yadav P.-N.; Srivastava A.-K. Eur. J. Med. Chem. 2018, 152, 148.
[2]
Iskander A. BTL NEDERLAND 2022, 5, 1.
[3]
Reddy C.-R.; Prajapti S. K.; Warudikar K.; Ranjan R.; Rao B. B. Org. Biomol. Chem. 2017, 15, 3130.
[4]
Song R.; Xie Y. Chin. J. Chem. 2017, 35, 280.
[5]
Yang W.-C.; Zhang M.-M.; Feng J.-G. Adv. Synth. Catal. 2020, 362, 4446.
[6]
Liang X.-W.; Zheng C.; You S.-L. Chem.-Eur. J. 2016, 22, 11918.
[7]
Cheng Y.-Z.; Feng Z.; Zhang X.; You S.-L. Chem. Soc. Rev. 2022, 51, 2145.
[8]
Wolfe J.-P. Top Heterocyclic Chemistry, Vol. 32, Ed.: Wolfe, J. P., Springer, Berlin, 2013, p. 1.
[9]
Wei W.-T.; Song R.-J.; Ouyang X.-H.; Li Y.; Li H.-B.; Li J.-H. Org. Chem. Front. 2014, 1, 484.
[10]
Hua H.-L.; He Y.-T.; Qiu Y.-F.; Li Y.-X.; Song B.; Gao P.; Song X.-R.; Guo D.-H.; Liu X.-Y.; Liang Y.-M. Chem.-Eur. J. 2014, 21, 1468.
[11]
Qian P.-C.; Liu Y.; Song R.-J.; Xiang J.-N.; Li J.-H. Synlett 2015, 26, 1213.
[12]
Ouyang X.-H.; Song R.-J.; Liu B.; Li J.-H. Chem. Commun. 2016, 52, 2573.
[13]
Gao P.; Zhang W.; Zhang Z. Org. Lett. 2016, 18, 5820.
[14]
Mo K.; Zhou X.; Wu J.; Zhao Y. Chem. Commun. 2022, 58, 1306.
[15]
Reddy C. R.; Kolgave D. H.; Ajaykumar U.; Ramesh R. Org. Biomol. Chem. 2022, 20, 6879.
[16]
Wu L.-J.; Tan F.-L.; Li M.; Song R.-J.; Li J.-H. Org. Chem. Front. 2017, 4, 350.
[17]
Wang J.; Lu X.-X.; Yang R.-P.; Xiang Z.-H.; Zhang B.-B.; Chao S.; Liu L.; Yan Y.; Shang X. J. Org. Chem. 2022, 87, 13089.
[18]
Wang L.-J.; Wang A.-Q.; Xia Y.; Wu X.-X.; Liu X.-Y.; Liang Y.-M. Chem. Commun. 2014, 50, 13998.
[19]
Cui H.; Wei W.; Yang D.; Zhang J.; Xu Z.; Wen J.; Wang H. RSC Adv. 2015, 5, 84657.
[20]
Jin D.-P.; Gao P.; Chen D.-Q.; Chen S.; Wang J.; Liu X.-Y.; Liang Y.-M. Org. Lett. 2016, 14, 3486.
[21]
Vacala T. L.; Carlson P. R.; Arreola-Hester A.; Williams C. G.; Makhoul E. W.; Vadola P. A. J. Org. Chem. 2018, 83, 1493.
[22]
Yuan J.-W.; Mou C.-X.; Zhang Y.; Hu W.-Y.; Yang L.-R.; Xiao Y.-M.; Mao P.; Zhang S.-R.; Qu L.-B. Org. Biomol. Chem. 2021, 19, 10348.
[23]
Reddy C. R.; Kolgave D. H.; Subbarao M.; Aila M.; Prajapti S. K. Org. Lett. 2022, 22, 5342.
[24]
Reddy C. R.; Subbarrao M.; Kolgave D. H.; Ajaykumar U.; Vinaya P. P. ACS Omega 2022, 7, 38045.
[25]
Li M.; Song R.-J.; Li J.-H. Chin. J. Chem. 2017, 35, 299.
[26]
He Y. C.; Qiu G. Org. Biomol. Chem. 2017, 15, 3485.
[27]
Xia Y.; Wang L.-J.; Wang J.; Chen S.; Guo C.-H.; Liang Y.-M. J. Org. Chem. 2017, 82, 12386.
[28]
Gao W.-C.; Liu T.; Cheng Y.-F.; Chang H.-H.; Li X.; Zhou R.; Wei W.-L.; Qiao Y. J. Org. Chem. 2017, 82, 13459.
[29]
Qiao Z.; Shao C.; Gao Y.; Liang K.; Yin H.; Chen F.-X. Tetrahedron Lett. 2022, 100, 153875.
[30]
Bansode A. H.; Shaikh S. R.; Gonnade R. G.; Patil N. T. Chem. Commun. 2017, 53, 9081.
[31]
Wei W.; Cui H.; Yang D.; Yue H.; He C.; Zhang Y.; Wang H. Green Chem. 2017, 19, 5608.
[32]
Sahoo H.; Mandal A.; Dana S.; Baidya M. Adv. Synth. Catal. 2018, 360, 1099.
[33]
Chen Y.; Chen Y.-J.; Guan Z.; He Y.-H. Tetrahedron 2019, 75, 130763.
[34]
Liu T.; Li Y.; Jiang L.; Wang J.; Jin K.; Zhang R.; Duan C. Org. Biomol. Chem. 2020, 18, 1933.
[35]
Zhang N.; Zuo H.; Xu C.; Pan J.; Sun J.; Guo C. Chin. Chem. Lett. 2020, 31, 337.
[36]
Manna S.; Ashwathappa P. K. S.; Prabhu K. R. Chem. Commun. 2020, 56, 13165.
[37]
Zeng F.-L.; Chen X.-L.; Sun K.; Zhu H.-L.; Yuan X.-Y.; Liu Y.; Qu L.-B.; Zhao Y.-F.; Yu B. Org. Chem. Front. 2021, 8, 760.
[38]
Chen Y.; Lu F.-Y.; Li R.-X.; Guan Z.; He Y.-H. Asian J. Org. Chem. 2021, 10, 668.
[39]
Zhu H.-L.; Zeng F.-L.; Chen X.-L.; Sun K.; Li H.-C.; Yuan X.-Y.; Qu L.-B.; Yu B. Org Lett. 2021, 23, 2976.
[40]
Zeng F.-L.; Zhu H.-L.; Chen X.-L.; Qu L.-B.; Yu B. Green Chem. 2021, 23, 3677.
[41]
Yuan J.-W.; Shen L.; Ma M.-Y.; Feng S.; Yang W.; Yang L.-R.; Xiao Y.-M.; Zhang S.-R.; Qu L.-B. New J. Chem. 2022, 46, 4470.
[42]
Zhou T.; Liu R.; Wang X.; Rui M.; Zhao X.; Lu K. Asian. J. Org. Chem. 2022, 11, e202200154.
[43]
Yang M.; Hua J.-W.; Wang H.; Ma T.; Liu C.-K.; He W.; Zhu N.; Hu Y.; Fang Z.; Kai G. J. Org. Chem. 2022, 87, 8445.
[44]
Manna S.; Prabhu K. R. Org. Lett. 2023, 25, 810.
[45]
Liu Y.; Wang Q.-L.; Zhou C.-S.; Xiong B.-Q.; Zhang P.-L.; Yang C.-A.; Tang K.-W. J. Org. Chem. 2018, 83, 2210.
[46]
Liu Y.; Wang Q.-L.; Xiong B.-Q.; Zhang P.-L.; Yang C.-A.; Gong Y.-X.; Liao J.; Zhou Q. Synlett 2018, 29, 2396.
[47]
Liu Y.; Wang Q.-L.; Chen Z.; Zhou Q.; Xiong B.-Q.; Zhang P.-L.; Tang K.-W. Chem. Commun. 2019, 55, 12212.
[48]
Nair A.; Halder I.; Khan S.; Volla C. M. R. Adv. Synth. Catal. 2020, 362, 224.
[49]
Chen P.; Xie J.; Chen Z.; Xiong B.-Q.; Liu Y.; Yang C.-A.; Tang K.-W. Adv. Synth. Catal. 2021, 363, 4440.
[50]
Tang B.-X.; Zhang Y.-H.; Song R.-J.; Tang D.-J.; Deng G.-B.; Wang Z.-Q.; Xie Y.-X.; Xia Y.-Z.; Li J.-H. J. Org. Chem. 2012, 77, 2837.
[51]
Ouyang X.-H.; Song R.-J.; Li Y.; Liu B.; Li J.-H. J. Org. Chem. 2014, 79, 4582.
[52]
Yang X.-H.; Ouyang X.-H.; Wei W.-T.; Song R.-J.; Li J.-H. Adv. Synth. Catal. 2015, 357, 1161.
[53]
Wen J; Wei W.; Xue S.; Yang D.; Lou Y.; Gao C.; Wang H. J. Org. Chem. 2015, 80, 4966.
[54]
Yugandhar D.; Srivastava A. K. ACS Comb. Sci. 2015, 17, 474.
[55]
Yugandhar D.; Kuriakose S.; Nanubolu J. B.; Srivastava A. K. Org. Lett. 2016, 18, 1040.
[56]
Reddy C. R.; Yarlagadda S.; Ramesh B.; Reddy M. R.; Sridhar B.; Reddy B. V. S. Eur. J. Org. Chem. 2017, 2017, 2332.
[57]
Wang C.-S.; Roisnel T.; Dixneuf P. H.; Soulé J.-F. Adv. Synth. Catal. 2019, 361, 445.
[58]
Recchi A. M. S.; Rosa P. H. P.; Back D. F.; Zeni G. Org. Biomol. Chem. 2020, 18, 3544.
[59]
Sahoo H.; Grandhi G. S.; Ramakrishna I.; Baidya M. Org. Biomol. Chem. 2019, 17, 10163.
[60]
Li X.; Zhang B.; Yu Z.; Zhang D.; Shi H.; Xu L.; Du Y. Synthesis 2022, 54, 1375.
[61]
(a) Yuan J.-W.; Huang G.-C.; Wang L.-L.; Wang X.-Y.; Yang L.-R.; Zhang S.-R.; Mao P.; Xiao Y.-M.; Qu L.-B. Z. Natur- forsch., B 2022, 77, 75.
[61]
(b) Yuan J.-W.; Chen Q.; Wu W.-T.; Zhao J.-J.; Yang L.-R.; Xiao Y.-M.; Mao P.; Qu L.-B. New. J. Chem. 2022, 46, 9451.
[62]
Nair A. M.; Shinde A. H.; Kumar S.; Volla C. M. R. Chem. Commun. 2020, 56, 12367.
[63]
Li X.; Wang Y.; Ouyang Y.; Yu Z.-Y.; Zhang B.; Zhang J.; Shi H.; Zuilhof H.; Du Y. J. Org. Chem. 2021, 86, 9490.
[64]
Li X.; Zhang B.; Zhao B.; Wang X.; Xu L.; Du Y. Adv. Synth. Catal. 2022, 364, 1427.
[65]
Chen P.; Fan J.-H.; Yu W.-Q.; Xiong B.-Q.; Liu Y.; Tang K.-W.; Xie J. J. Org. Chem. 2022, 87, 5643.
[66]
Wang Q.; Liu H.-F.; Ren S.-Y.; He M.-X.; Pan Y.-M. Synthesis 2023, DOI: 10.1055/a-2019-0399.
[67]
Hua J.; Fang Z.; Bian M.; Ma T.; Yang M.; Xu J.; Liu C.; He W.; Zhu N.; Yang Z.; Guo K. ChemSusChem 2020, 13, 2053.
[68]
Yu K.; Kong X.; Yang J.; Li G.; Xu B.; Chen Q. J. Org. Chem. 2021, 86, 917.
[69]
Chen Z.; Tang W.; Yang S.; Yang L. Green Synth. Catal. 2023, DOI: 10.1016/j.gresc.2022.09.006.
文章导航

/