研究论文

联吡啶配体促进铬催化炔烃的顺式硼氢化反应

  • 王莎 ,
  • 陈常鹏 ,
  • 曾小明
展开
  • 四川大学化学学院 成都 610064

收稿日期: 2023-05-20

  修回日期: 2023-06-06

  网络出版日期: 2023-06-14

基金资助

国家自然科学基金(21971168); 国家自然科学基金(22125107)

Bipyridine Ligand-Promoted cis-Selective Hydroboration of Alkynes with Chromium Catalysis

  • Sha Wang ,
  • Changpeng Chen ,
  • Xiaoming Zeng
Expand
  • College of Chemistry, Sichuan University, Chengdu 610064

Received date: 2023-05-20

  Revised date: 2023-06-06

  Online published: 2023-06-14

Supported by

National Natural Science Foundation of China(21971168); National Natural Science Foundation of China(22125107)

摘要

报道了金属铬催化炔烃的硼氢化反应. 廉价易得的三氯化铬在4,4'-二叔丁基-2,2'-联吡啶配体及单质镁的还原作用下表现出高反应活性, 催化实现了频哪醇硼烷与炔烃加成的硼氢化反应, 为室温条件下制备烯基硼化合物提供了一条有效的合成策略.

关键词: 铬催化; 硼氢化反应

本文引用格式

王莎 , 陈常鹏 , 曾小明 . 联吡啶配体促进铬催化炔烃的顺式硼氢化反应[J]. 有机化学, 2023 , 43(7) : 2447 -2453 . DOI: 10.6023/cjoc202210006

Abstract

The chromium-catalyzed hydroboration of alkynes under mild conditions was reported. Low-cost chromium(III) chloride combined with 4,4'-di-tert-butyl 2,2'-bipyridine as the ligand and magnesium as the reductant shows high reactivity, which can catalyze and promote the hydroboration of alkynes with pinacolborane, thereby providing a strategy to form borylated olefins at ambient temperature.

参考文献

[1]
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[2]
(a) Roscales, S.; Csaky?, A. G. Chem. Soc. Rev. 2014, 43, 8215.
[2]
(b) Leonori, D.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2015, 54, 1082.
[3]
(a) Revunova, K.; Nikonov, G. I. Dalton Trans. 2015, 44, 840.
[3]
(b) Rochat, R.; Lopez, M. J.; Tsurugi, H.; Mashima, K. ChemCatChem 2016, 8, 10.
[4]
(a) Arrowsmith, M.; Hadlington, T. J.; Hill, M. S.; KociokKohn, G. Chem. Commun. 2012, 48, 4567.
[4]
(b) Arrowsmith, M.; Hill, M. S.; Kociok-Kchn, G. Chem.-Eur. J. 2013, 19, 2776.
[4]
(c) Mukherjee, D.; Ellern, A.; Sadow, A. D. Chem. Sci. 2014, 5, 959.
[4]
(d) Fohlmeister, L.; Stasch, A. Chem. Eur. J. 2016, 22, 10235.
[5]
(a) Kim, H. R.; Yun, J. Chem. Commun. 2011, 47, 2943.
[5]
(b) Yuan, W.; Ma, S. Org. Biomol. Chem. 2012, 10, 7266.
[5]
(c) Hall, J. W.; Unson, D. M. L.; Brunel, P.; Collins, L. R.; Cybulski, M. K.; Mahon, M. F.; Whittlesey, M. K. Organometallics 2018, 37, 3102.
[5]
(d) Bao, H.; Zhou, B.; Jin, H.; Liu, Y. J. Org. Chem. 2019, 84, 3579.
[5]
(e) Armstrong, M. K.; Lalic, G. J. Am. Chem. Soc. 2019, 141, 6173.
[6]
(a) Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230.
[6]
(b) Nakajima, K.; Kato, T.; Nishibayashi, Y. Org. Lett. 2017, 19, 4323.
[6]
(c) Myhill, J. A.; Wilhelmsen, C. A.; Zhang, L.; Morken., J. P. J. Am. Chem. Soc. 2018, 140, 15181.
[7]
(a) Chen, J.; Shen, X.; Lu, Z. Angew. Chem., Int. Ed. 2021, 60, 690.
[7]
(b) Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem., Int. Ed. 2016, 55, 15356.
[7]
(c) Ben-Daat, H.; Rock, C. L.; Flores, M.; Groy, T. L.; Bowman, A. C.; Trovitch, R. J. Chem. Commun. 2017, 53, 7333.
[7]
(d) Guo, J.; Cheng, B.; Shen, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 15316.
[7]
(e) Victoria, A.; Pollard, M.; Angeles, F.; Alan, R.; Kennedy, R. M.; Mulvey, R. E. Angew. Chem. Int. Ed. 2018, 57, 10651.
[7]
(f) Magre, M.; Maity, B.; Falconnet, A.; Cavallo, L.; Rueping, M. Angew. Chem. Int. Ed. 2019, 58, 1.
[8]
Mandal, S.; Kumar Verma, P.; Geetharani, K. Chem. Commun. 2018, 54, 13690.
[9]
Minami, H.; Saito, T.; Wang, C.; Uchiyama, M. Angew. Chem., Int. Ed. 2015, 54, 4665.
[10]
Fleige, M.; Mobus, J.; Stein, T.; Glorius, F.; Stephan, D. W. Chem. Commun. 2016, 52, 10830.
[11]
Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548.
[12]
(a) Agapie, T. Coord. Chem. Rev. 2011, 255, 861.
[12]
(b) Li, J.; Knochel, P. Synthesis 2019, 51, 2100.
[12]
(c) Zeng, X. Synlett 2020, 31, 205.
[12]
(d) Cong, X.; Zeng, X. Acc. Chem. Res. 2021, 54, 2014.
[13]
(a) Cong, X.; Tang, H.; Zeng, X. J. Am. Chem. Soc. 2015, 137, 14367.
[13]
(b) Steib, A. K.; Kuzmina, O. M.; Fernandez, S.; Malhotra, S.; Knochel, P. Chem. Eur. J. 2015, 21, 1961.
[13]
(c) Yan, J.; Yoshikai, N. Org. Lett. 2017, 19, 6630.
[13]
(d) Han, B.; Ma, P.; Cong, X.; Chen, H.; Zeng, X. J. Am. Chem. Soc. 2019, 141, 9018.
[13]
(e) Yin, J.; Li, J.; Wang, G.-X.; Yin, Z.-B.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2019, 141, 4241.
[13]
(f) Tang, J.; Liu, L. L.; Yang, S.; Cong, X.; Luo, M.; Zeng, X. J. Am. Chem. Soc. 2020, 142, 7715.
[13]
(g) Chen, M.; Doba, T.; Sato, T.; Razumkov, H.; Ilies, L.; Shang, R.; Nakamura, E. J. Am. Chem. Soc. 2020, 142, 4883.
[13]
(h) Zhao, L.; Hu, C.; Cong, X.; Deng, G.; Liu, L. L.; Luo, M.; Zeng, X. J. Am. Chem. Soc. 2021, 143, 1618.
[13]
(i) Zhang, Y.; Zhu, S. Chin. J. Org. Chem. 2021, 41, 1255.
[13]
(j) Ye, Y.; Gong, H. Chin. J. Org. Chem. 2020, 40, 2588.
[13]
(k) Zhao, Y.; Ge, S. Angew. Chem. Int. Ed. 2021, 60, 2149.
[14]
Shima, T.; Yang, J.; Luo, G.; Luo, Y.; Hou, Z. J. Am. Chem. Soc. 2020, 142, 9007..
[15]
Gong, L.; Li, C.; Yuan, F.; Liu, S.; Zeng, X. Org. Lett. 2022, 24, 3227.
[16]
(a) Zhang, Y.-D.; Li, X.-Y.; Mo, Q.-K.; Shi, W.-B.; Zhao, J.-B.; Zhu, S.-F. Angew. Chem. Int. Ed. 2022, 61, e202208473.
[16]
(b) Zhou, F.; Shi, W.; Liao, X.; Yang, Y.; Yu, Z.; You, J. ACS Catal. 2022, 12, 676.
[16]
(c) Brzozowska, A.; Zubar, V.; Ganardi, R.-C; Rueping, M. Org. Lett. 2020, 22, 3765.
[16]
(d) Tai, C.-C; Yu, M.-S; Chen, Y.-L; Chuang, W. H; Lin, T.-H; Yap, G. P. A.; Ong, T.-G. Chem. Commun., 2014, 50, 4344.
[16]
(e) Salvado, O.; Fernández, E. Chem. Commun., 2021, 57, 6300.
[16]
(f) Ikenaga, K.; Kikukawa, K.; Matsuda, T. J. Org. Chem. 1987, 52, 1276.
[16]
(g) Garhwal, S.; Fridman, N.; de Ruiter, G. Inorg. Chem. 2020, 59, 13817.
文章导航

/