研究论文

硅烷桥联四苯乙烯-寡聚噻吩衍生物的结构与光谱性质

  • 余富欢 ,
  • 周志宽 ,
  • 谢威 ,
  • 周传庭 ,
  • 盖立志 ,
  • 卢华
展开
  • 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121

收稿日期: 2023-05-07

  修回日期: 2023-05-26

  网络出版日期: 2023-06-14

基金资助

国家自然科学基金(21871072); 国家自然科学基金(21801057); 杭州市领军型创新创业团队(TD2020015)

Structure and Photophysical Properties of Silane Bridged Tetraphenylethylene-Oligothiophene Derivatives

  • Fuhuan Yu ,
  • Zhikuan Zhou ,
  • Wei Xie ,
  • Chuanting Zhou ,
  • Lizhi Gai ,
  • Hua Lu
Expand
  • Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121

Received date: 2023-05-07

  Revised date: 2023-05-26

  Online published: 2023-06-14

Supported by

National Natural Science Foundation of China(21871072); National Natural Science Foundation of China(21801057); Hangzhou Leading Youth Innovation and Entrepreneurship Team Project(TD2020015)

摘要

设计合成了一系列硅烷桥联四苯乙烯(TPE)-寡聚噻吩衍生物. 硅烷取代基为甲基和苯基, 寡聚噻吩单元中噻吩数量为1~3, 通过空间位阻效应和电子效应调控分子的固态发光性质. 具有苯基取代基的硅烷和二噻吩分子表现出高达64.5%的固态发光. 含1或2个噻吩单元的分子的固态和液态荧光性质类似四苯乙烯, 而含3个噻吩的分子的发光则主要来自于三噻吩, 其在液态和聚集态分别有1.4%和14%的发光效率. 苯基硅烷桥联三噻吩-四苯乙烯分子的聚集体具有检测硝基爆炸物的能力和防伪应用潜力.

本文引用格式

余富欢 , 周志宽 , 谢威 , 周传庭 , 盖立志 , 卢华 . 硅烷桥联四苯乙烯-寡聚噻吩衍生物的结构与光谱性质[J]. 有机化学, 2023 , 43(10) : 3652 -3660 . DOI: 10.6023/cjoc202305006

Abstract

A series of silane-bridged tetraphenylethene (TPE)-oligothiophene derivatives were synthesized. The silane substituents varied from methyl to phenyl groups, while the number of thiophene units in the oligothiophene segment was 1 to 3. The solid-state luminescence properties of the molecules were regulated by steric hindrance and electronic effects. Phenyl substituted silane-bridged bithiophene (BT)-TPE molecules exhibited up to 64.5% solid-state luminescence. Molecules containing 1 or 2 thiophene units exhibited fluorescence properties similar to TPE in both solid and liquid states, while the emission of molecules containing 3 thiophene units mainly came from terthiophene (TT) with luminescence efficiencies of 1.4% and 14% in liquid and aggregated states, respectively. The aggregate of phenyl substituted silane-bridged TT-TPE molecules exhibited potential for detecting nitro explosives and anti-counterfeiting applications.

参考文献

[1]
Wang H.; Zhang X.; Li Y. Xu L.-W. Angew. Chem., Int. Ed. 2022, 61, e202210851.
[2]
Ding Y.; Zhang J.; Li Y.; Cui C. J. Am. Chem. Soc. 2022, 144, 20566.
[3]
Zuo Y.; Liang X.; Yin J.; Gou Z.; Lin W. Coord. Chem. Rev. 2021, 447, 214166.
[4]
Wang H.; Chen S.; Li Y.; Liu Y.; Jing Q.; Liu X.; Liu Z.; Zhang X. Adv. Energy Mater. 2021, 11, 2101057.
[5]
Shi H.; Yang J.; Li Z.; He C. In Silicon Containing Hybrid Copolymers, Wiley-VCH, Germany, 2020, p. 1.
[6]
Wang X.-L.; Yin X.-H.; Xiao J.-Z.; Jia X.-S.; Yin L. Chin. J. Chem. 2021, 39, 1916.
[7]
Yang C.-H.; Chen J. C.; Li X.-H.; Meng Li.; Wang K.-M.; Sun W.-Q.; Fan B.-M. Acta Chim. Sinica 2023, 81, 1 (in Chinese).
[7]
(杨春晖, 陈景超, 李新汉, 孟丽, 王凯民, 孙蔚青, 樊保敏, 化学学报, 2023, 81, 1.)
[8]
Huang W.-S.; Xu L.-W. Chin. J. Org. Chem. 2021, 41, 4515 (in Chinese).
[8]
(黄伟升, 徐利文, 有机化学, 2021, 41, 4515.)
[9]
Cheng Y.; Hu R. J.; Chen X.-Q.; Yang H.; Niu X.-K.; Yang L. Chin. J. Org. Chem. 2022, 42, 323 (in Chinese).
[9]
(程异, 胡荣静, 陈晓琪, 杨浩, 牛晓康, 杨磊, 有机化学, 2022, 42, 323.)
[10]
Liu D.; Du M.; Chen D.; Ye K.; Zhang Z.; Liu Y.; Wang Y. J. Mater. Chem. C 2015, 3, 4394.
[11]
Gong S.; Chen Y.; Luo J.; Yang C.; Zhong C.; Qin J.; Ma D. Adv. Funct. Mater. 2011, 21, 1168.
[12]
Lu H.; Wang Q.; Gai L.; Li Z.; Deng Y.; Xiao X.; Lai G.; Shen Z. Chem.-Eur. J. 2012, 18, 7852.
[13]
Zheng Y.; Wang Z.; Wang X.; Li J.; Feng X. J.; He G.; Zhao Z.; Lu H. ACS Appl. Electron. Mater. 2021, 3, 422.
[14]
Murai M.; Abe M.; Ogi S.; Yamaguchi S. J. Am. Chem. Soc. 2022, 144, 20385.
[15]
Feng S.; Qu Z.; Zhou Z.; Chen J.; Gai L.; Lu H. Chem. Commun. 2021, 57, 11689.
[16]
Tang W.; Gao H.; Li J.; Wang X.; Zhou Z.; Gai L.; Feng X. J.; Tian J.; Lu H.; Guo Z. Chem.-Asian J. 2020, 15, 2724.
[17]
Tang R.-H.; Xu Z.; Nie Y.-X.; Xiao X.-Q.; Yang K.-F.; Xie J.-L.; Guo B.; Yin G.-W.; Yang X.-M.; Xu L.-W. iScience 2020, 23, 101268.
[18]
Luo Q.; Wang W.; Tan J.; Yuan Q. Chin. J. Chem. 2021, 39, 1009.
[19]
Zheng Y.; Zhu X.; Ni Z.; Wang X.; Zhong Z.; Feng X. J.; Zhao Z.; Lu H. Adv. Opt. Mater. 2021, 9, 2100965.
[20]
Hirata S.; Nishio M.; Uchida H.; Usuki T.; Nakae T.; Miyachi M.; Yamanoi Y.; Nishihara H. J. Phys. Chem. C 2020, 124, 3277.
[21]
Inubushi H.; Hattori Y.; Yamanoi Y.; Nishihara H. J. Org. Chem. 2014, 79, 2974.
[22]
Sosorev A. Y.; Nuraliev M. K.; Feldman E. V.; Maslennikov D. R.; Borshchev O. V.; Skorotetcky M. S.; Surin N. M.; Kazantsev M. S.; Ponomarenko S. A.; Paraschuk D. Y. Phys. Chem. Chem. Phys. 2019, 21, 11578.
[23]
Parashchuk O. D.; Mannanov A. A.; Konstantinov V. G.; Dominskiy D. I.; Surin N. M.; Borshchev O. V.; Ponomarenko S. A.; Pshenichnikov M. S.; Paraschuk D. Y. Adv. Funct. Mater. 2018, 28, 1800116.
[24]
Skorotetcky M. S.; Borshchev O. V.; Surin N. M.; Meshkov I. B.; Muzafarov A. M.; Ponomarenko S. A. Silicon 2015, 7, 191.
[25]
Zhang Y.; Xie S.; Zeng Z.; Tang B. Z. Matter 2020, 3, 1862.
[26]
Wang L.; Wang L.; Yang X.; Li W.; Chen L.; Tang J.; Cong W.; Hu R.; Tebyetekerwa M.; Tang B. Prog. Org. Coat. 2022, 163, 106633.
[27]
Li W.; Ding Y.; Tebyetekerwa M.; Xie Y.; Wang L.; Li H.; Hu R.; Wang Z.; Qin A.; Tang B. Z. Mater. Chem. Front. 2019, 3, 2491.
[28]
Li J.; Shan T.; Yao M.; Gao Y.; Han X.; Yang B.; Lu P. J. Mater. Chem. C 2017, 5, 2552.
[29]
Gong W.-L.; Wang B.; Aldred M. P.; Li C.; Zhang G.-F.; Chen T.; Wang L.; Zhu M.-Q. J. Mater. Chem. C 2014, 2, 7001.
[30]
Zheng X.; Zhu W.; Zhang C.; Zhang Y.; Zhong C.; Li H.; Xie G.; Wang X.; Yang C. J. Am. Chem. Soc. 2019, 141, 4704.
[31]
Mu C.; Zhang Z.; Hou Y.; Liu H.; Ma L.; Li X.; Ling S.; He G.; Zhang M. Angew. Chem., Int. Ed. 2021, 60, 12293.
[32]
Ni Y.; Zhang S.; He X.; Huang J.; Kong L.; Yang J.; Yang J. Anal. Methods 2021, 13, 2830.
[33]
Feng H.; Zhou Z.; May A. K.; Chen J.; Mack J.; Nyokong T.; Gai L.; Lu H. J. Mater. Chem. C 2021, 9, 6470.
[34]
Xiang X.; Zhou Z.; Feng H.; Feng S.; Gai L.; Lu H.; Guo Z. CCS Chem. 2020, 2, 329.
[35]
Feng S.; Zhou Z.; Xiang X.; Feng H.; Qu Z.; Lu H. ACS Omega 2020, 5, 19181.
[36]
Zheng X.; Du W.; Gai L.; Xiao X.; Li Z.; Xu L.; Tian Y.; Kira M.; Lu H. Chem. Commun. 2018, 54, 8834.
[37]
Wang S.; Lu H.; Wu Y.; Xiao X.; Li Z.; Kira M.; Shen Z. Chem.-Asian J. 2017, 12, 561.
[38]
Yamanoi Y.; Nishihara H. J. Org. Chem. 2008, 73, 6671.
[39]
Bunker C. E.; Hamilton N. B.; Sun Y. P. Anal. Chem. 1993, 65, 3460.
[40]
Shih P.-I.; Chuang C.-Y.; Chien C.-H.; Diau E. W.-G.; Shu C.-F. Adv. Funct. Mater. 2007, 17, 3141.
[41]
Beiting E. J.; Zeringue K. J.; Stickel R. E. Spectrochim. Acta 1985, 41, 1413.
[42]
Shimada M.; Tsuchiya M.; Sakamoto R.; Yamanoi Y.; Nishibori E.; Sugimoto K.; Nishihara H. Angew. Chem., Int. Ed. 2016, 55, 3022.
[43]
Tao T.; Gan Y.; Zhao Y.; Yu J.; Huang Q.; Yang Z.; Chen M.; Huang W. J. Mater. Chem. C 2019, 7, 3765.
文章导航

/