芳香卤代物C—S偶联反应的研究进展
Research Progress in C—S Coupling Reactions of Aryl Halides
Received date: 2023-03-29
Revised date: 2023-05-31
Online published: 2023-06-26
含硫化合物在天然产物、药物、农药和材料中广泛存在, 具有多种生物活性或独特功能. C—S偶联反应是合成含硫化合物的重要方法, 是有机合成领域的研究热点之一. 随着对催化剂的深入开发和对含硫偶联反应物的不断扩展, 近年来涌现出大量的C—S偶联反应方法, 为含硫化合物的合成提供了便利. 芳香卤代烃是合成含硫化合物的主要底物, 通过设计不同的反应体系和含硫偶联反应物进行C—S偶联反应, 能够高效地合成硫酚、硫醚、二硫醚和砜等含硫化合物. 按照不同种类的含硫偶联反应物类型和催化剂种类(钯、铜和镍等)进行分类, 综述了近年来以芳香卤代烃为底物的C—S偶联反应, 并对代表性反应的机理做了简要说明和比较. 此外, 还对这一领域目前存在的问题和局限性进行简要分析, 并对未来发展方向提出展望.
秦思凝 . 芳香卤代物C—S偶联反应的研究进展[J]. 有机化学, 2023 , 43(11) : 3761 -3783 . DOI: 10.6023/cjoc202303042
Sulfur-containing compounds are widely found in natural products, pharmaceuticals, pesticides, and materials, possessing a variety of biological activities or unique functions. C—S coupling reaction is an important method for the synthesis of sulfur-containing compounds and is one of the hot spots in the field of organic synthesis. With the in-depth development of catalysts and the continuous expansion of sulfur-containing coupling partners, a large number of C—S coupling reactions have emerged in recent years, which greatly facilitate the synthesis of sulfur-containing compounds. Aryl halides are the main kind of substrates for the synthesis of sulfur-containing compounds. C—S coupling reactions of aryl halides and sulfur-containing coupling partners can efficiently afford sulfur-containing compounds, such as thiophenols, thioethers, disulfides and sulfones in different well-designed reaction systems. In this review, the C—S coupling reactions with aryl halides as substrates are reviewed according to the different types of sulfur-containing coupling partners and catalysts (palladium, copper, nickel, and others). The mechanisms of representative reactions are briefly described and compared. In addition, a brief analysis of the current situations and limitations in this field is given, and a prospect for future development is put forward.
| [1] | Shin, H. W.; Jin, X. H.; Gim, M. J.; Kim, I. H.; Kim, Y. Y. Anim. Biosci. 2023, 36, 776. |
| [2] | Liu, Z.; Li, M.; Wang, S.; Huang, H.; Zhang, W. Mar. Drugs 2022, 20, 765. |
| [3] | Shoaib, S.; Ansari, M. A.; Ghazwani, M.; Hani, U.; Jamous, Y. F.; Alali, Z.; Wahab, S.; Ahmad, W.; Weir, S.A.; Alomary, M.N.; Yusuf, N.; Islam, N. Cancers (Basel) 2023, 15, 697. |
| [4] | Domán, A.; Dóka, é.; Garai, D.; Bogdándi, V.; Balla, G.; Balla, J.; Nagy, P. Redox. Biol. 2023, 60, 102617. |
| [5] | Li, N. S. Acc. Chem. Res. 2011, 44, 1257. |
| [6] | Haruki, H.; Pedersen, M. G.; Gorska, K. I.; Pojer, F.; Johnsson, K. Science 2013, 340, 987. |
| [7] | Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291. |
| [8] | Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. |
| [9] | Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596. |
| [10] | Jing, D.; Lu, C.; Chen, Z.; Jin, S.; Xie, L.; Meng, Z.; Su, Z.; Zheng, K. Angew. Chem., Int. Ed. 2019, 58, 14666. |
| [11] | Lu, C.J.; Xu, Q.; Feng, J.; Liu, R.R. Angew. Chem., Int. Ed. 2023, 62, e202216863. |
| [12] | Bisz, E.; Szostak, M. ChemSusChem 2017, 10, 3964. |
| [13] | Nasrollahzadeh, M. Molecules 2018, 23, 2532. |
| [14] | He, Z.; Wu, D.; Vessally, E. Top Curr. Chem. (Cham). 2020, 378, 46. |
| [15] | Zhao, W.; Zhang, F.; Deng, G. J. Org. Chem. 2021, 86, 291. |
| [16] | Karreman, S.; Karnbrock, S.B.H.; Kolle, S.; Golz, C.; Alcarazo, M. Org. Lett. 2021, 23, 1991. |
| [17] | Ru-Jian, Y.; Chun-Yan, Z.; Xiang, Z.; Xiong, Y.; Duan, X. Org. Biomol. Chem. 2021, 19, 2901. |
| [18] | Wang, Y.-D.; Li, F. -, H.; Zeng, Q.-L. Acta Chem. Sinica 2022, 80, 386. (in Chinese) |
| [18] | (王一丁, 李福海, 曾庆乐, 化学学报, 2022, 80, 386.) |
| [19] | Hanaya, K.; Ohtsu, H.; Kawano, M.; Higashibayashi, S.; Sugai, T. Asian J. Org.Chem. 2021, 10, 582. |
| [20] | Liu, Y.; Liu, S.; Xiao, Y. Beilstein J. Org. Chem. 2017, 13, 589. |
| [21] | Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069. |
| [22] | Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397. |
| [23] | Jiang, Z.; She, J.; Lin, X. Adv. Synth. Catal. 2009, 351, 2558. |
| [24] | Fernández-Rodríguez, M. A.; Hartwig, P. J. Chem.-Eur. J. 2010, 16, 2355. |
| [25] | Sayah, M.; Organ, M. G. Chem.-Eur. J. 2011, 17, 11719. |
| [26] | Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803. |
| [27] | Basu, B.; Mandal, B.; Das, S.; Kundu, S. Tetrahedron Lett. 2009, 50, 5523. |
| [28] | Kao, H.; Chen, C.; Wang, Y.; Lee, C. Eur. J. Org. Chem. 2011, 2011, 1776. |
| [29] | Baig, R. B.; Varma, R. S. J. Chem. Commun. 2012, 48, 2582. |
| [30] | Woo, H.; Mohan, B.; Heo, E.; Park, J.; Song, H.; Park, K. Nanoscale Res. Lett. 2013, 8, 390. |
| [31] | Priya, D. D.; Roopan, S. M.; Singh, S.; Bansal, J.; Shanavas, S.; Khan, M. R.; Al-Dhabi, N. A.; Arasu, M. V.; Duraipandiyan, V. Mater. Lett. 2020, 266, 127486. |
| [32] | Huang, Y.; Tsai, W.; Badsara, S. S.; Chan, C.; Lee, C. J. Chin. Chem. Soc. 2014, 61, 967. |
| [33] | Panova, Y. S.; Kashin, A. S.; Vorobev, M. G.; Degtyareva, E. S.; Ananikov, V. P. ACS Catal. 2016, 6, 3637. |
| [34] | Sengupta, D.; Basu, B. J. Org. Med. Chem. Lett. 2014, 4, 17. |
| [35] | Thomas, A. M.; Asha, S.; Sindhu, K. S.; Anilkumar, G. Tetrahedron Lett. 2015, 56, 6560. |
| [36] | Zhang, B.; Yang, L.; Shi, R.; Kang, Y. Chin. J. Org. Chem. 2016, 36, 352. (in Chinese) |
| [36] | (张变香, 杨丽花, 史瑞雪, 亢永强, 有机化学, 2016, 36, 352.) |
| [37] | Chen, C. W.; Chen, Y. L.; Reddy, D. M.; Du, K.; Li, C.; Shih, B.; Xue, Y.; Lee, C. F. Chem.-Eur. J. 2017, 23, 10087. |
| [38] | Li, Z.; Li, T.; Liu, J.; Wang, X. Tetrahedron 2020, 76,130915. |
| [39] | Panigrahi, R.; Sahu, S. K.; Behera, P. K.; Panda, S.; Rout, L. Chem.-Eur. J. 2020, 26, 620. |
| [40] | Bakare, S. P.; Patil, M. New J. Chem. 2022, 46, 6283. |
| [41] | Katla R.; Katla, R. New J. Chem. 2022, 46, 13918. |
| [42] | Singha, R.; Chettri, S.; Brahman, D.; Sinha, B.; Ghosh, P. Mol. Diversity 2022, 26, 505. |
| [43] | Zhang, J.; Medley, C. M.; Krause, J. A.; Guan, H. Organometallics 2010, 29, 6393. |
| [44] | Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760. |
| [45] | Guo, F.; Sun, J.; Xu, Z.; Kühn, F. E.; Zang, S.; Zhou, M. Catal. Commun. 2017, 96, 11. |
| [46] | Rodríguez-Cruz, M. A.; Hernández-Ortega, S.; Valdés, H.; Rufino-Felipe, E.; Morales-Morales, D. J. Catal. 2020, 383, 193. |
| [47] | Sikari, R.; Sinha, S.; Das, S.; Saha, A.; Chakraborty, G.; Mondal, R.; Paul, N. D. J. Org. Chem. 2019, 84, 4072. |
| [48] | Wang, Y.; Deng, L.; Wang, X.; Wu, Z.; Wang, Y.; Pan, Y. ACS Catal. 2019, 9, 1630. |
| [49] | Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033. |
| [50] | Talukder, M. M.; Miller, J. T.; Cue, J. M. O.; Udamulle, C. M.; Bhadran, A.; Biewer, M. C.; Stefan, M. C. Organometallics 2021, 40, 83. |
| [51] | Martin, M. T.; Marin, M.; Maya, C.; Prieto, A.; Nicasio, M. C. Chem.-Eur. J. 2021, 27, 12320. |
| [52] | Oechsner, R. M.; Wagner, J. P.; Fleischer, I. ACS Catal. 2022, 12, 2233. |
| [53] | Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 1697. |
| [54] | Li, L.; Wu, J.; Chen, R.; Zhou, Q.; Xu, T.; Jiang, H. J. Zhejiang Univ. (Sci. Ed.) 2012, 39, 313. (in Chinese) |
| [54] | (李龙彪, 吴剑娇, 陈仁尔, 周其忠, 徐土根, 蒋华江, 浙江大学学报(理学版), 2012, 39, 313.) |
| [55] | Zhu, Y. Y.; Lan, G.; Fan, Y.; Veroneau, S. S.; Song, Y.; Micheroni, D.; Lin, W. J. Angew. Chem., Int. Ed. 2018, 57, 14090. |
| [56] | Mohammadinezhad, A.; Akhlaghinia, B. J. New J. Chem. 2019, 43, 15525. |
| [57] | Yu, F.; Mao, R.; Yu, M.; Gu, X.; Wang, Y. J. J. Org. Chem. 2019, 84, 9946. |
| [58] | Franco, M.; Vargas, E. L.; Tortosa, M.; Cid, M. B. Chem. Commun. 2021, 57, 11653. |
| [59] | Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874. |
| [60] | Saini, V.; Khungar, B. New J. Chem. 2018, 42, 12796. |
| [61] | Wang, Y.; Zhang, X.; Liu, H.; Chen, H.; Huang, D. Org. Chem. Front. 2017, 4, 31. |
| [62] | Zhu, D. L.; Wu, Q.; Li, H. Y.; Li, H. X.; Lang, J. P. Chem. Eur. J. 2020, 26, 3484. |
| [63] | Yan, Q.; Cui, W.; Song, X.; Xu, G.; Jiang, M.; Sun, K.; Lv, J.; Yang, D. Org. Lett. 2021, 23, 3663. |
| [64] | Jiang, S.; Zhang, Z.-T.; Young, D. J.; Chai, L.-L.; Wu, Q.; Li, H.-X. Org. Chem. Front. 2022, 9, 1437. |
| [65] | Kang, J.; Li, Z.; Chen, C.; Dong, L.; Zhang, S. J. Org. Chem. 2021, 86, 15326. |
| [66] | Wang, Y.; Zhang, F.; Wang, Y.; Pan, Y. Eur. J. Org. Chem. 2022, 2022, 88. |
| [67] | Zhong, S.; Zhou, Z.; Zhao, F.; Mao, G.; Deng, G.-J.; Huang, H. Org. Lett. 2022, 24, 1865. |
| [68] | Liu, Y.; Xing, S.; Zhang, J.; Liu, W.; Xu, Y.; Zhang, Y.; Yang, K.; Yang, L.; Jiang, K.; Shao, X. Org. Chem. Front. 2022, 9, 1375. |
| [69] | Zhang, Y.; Liu, W.; Xu, Y.; Liu, Y.; Peng, J.; Wang, M.; Bai, Y.; Lu, H.; Shi, Z.; Shao, X. Org. Lett. 2022, 24, 6794. |
| [70] | Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Samadi, A. J. Mol. Catal. A: Chem. 2013, 377, 190. |
| [71] | Roy, S.; Phukan, P. J. Tetrahedron Lett. 2015, 56, 2426. |
| [72] | Nowrouzi, N.; Mohammad, A.; Hadis, L. Appl. Organomet. Chem. 2017, 31, e3579. |
| [73] | Magne, V.; Ball, L. T. Chem.-Eur. J. 2019, 25, 8903. |
| [74] | Iraqui, S.; Rashid, M. H. New J. Chem. 2022, 46, 22766. |
| [75] | Liu, Z.; Quyang, K.; Yang, N. Org. Biomol. Chem. 2018, 16, 988. |
| [76] | Xu, X.; Wang, W.; Lu, L.; Zhang, J.; Luo, J. Catal. Lett. 2022, 152, 3031. |
| [77] | Liu, Y.; Xu, Y.; Zhang, Y.; Gao, W.; Shao, X. Org. Chem. Front. 2022, 9, 6490. |
| [78] | Xu, Y.; Liu, Y.; Zhang, Y.; Yang, K.; Wang, Y.; Peng, J.; Shao, X.; Bai, Y. J. Org. Chem. 2023, 88, 2773. |
| [79] | Peng, K.; Gao, M.; Yi, Y.; Guo, J.; Dong, Z. Eur. J. Org. Chem. 2020, 2020, 1665. |
| [80] | Zhao, T.; Liang, F.; Cai, M.; Chen, J.; Kang, C.; Wang, H.; Wu, Q. Asian J. Org. Chem. 2020, 9, 214. |
| [81] | Sawada, N.; Itoh, T.; Yasuda, N. Tetrahedron Lett. 2006, 47, 6595. |
| [82] | Hoogenband, A.; Lange, J. H. M.; Bronger, R. P. J.; Terpstra, J. W. J. Tetrahedron Lett. 2010, 51, 6877. |
| [83] | Park, N.; Park, K.; Jang, M.; Lee, S. J. J. Org. Chem. 2011, 76, 4371. |
| [84] | Hopkins, B. A.; Zavesky, B.; White, D. J. Org. Chem. 2022, 87, 7547. |
| [85] | Soleiman-Beigi, M.; Mohammadi, F. J. Tetrahedron Lett. 2012, 53, 7028. |
| [86] | Prasad, D. J. C.; Sekar, G. J. Org. Lett. 2011, 13, 1008. |
| [87] | Soundarya, P.; Sekar, G. Org. Biomol. Chem. 2022, 20, 7405. |
| [88] | Tao, C.; Lv, A.; Zhao, N.; Yang, S.; Liu, X.; Zhou, J.; Liu, W.; Zhao, J. Synlett 2011, 134. |
| [89] | Soleiman-Beigi, M.; Hemmati, M. J. Appl. Organomet. Chem. 2013, 27, 734. |
| [90] | Zhang, W.; Huang, M.; Zou, Z.; Wu, Z.; Ni, S.; Kong, L.; Zheng, Y.; Wang, Y.; Pan. Y. Chem. Sci. 2021, 12, 2509. |
| [91] | Christian, A. H. J. Org. Chem. 2021, 86, 10914. |
| [92] | Chen, H. Y.; Peng, W. T.; Lee, Y. H.; Chang, Y. L.; Chen, Y. J.; Lai, Y. C.; Jheng, N. Y.; Chen, H. Y. Organometallics 2013, 32, 5514. |
| [93] | Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Org. Biomol. Chem. 2013, 11, 2943. |
| [94] | Rostami, A.; Rostami, A.; Iranpoor, N.; Zolfigol, M. A. Tetrahedron Lett. 2016, 57, 192. |
| [95] | Semwal, R.; Ravi, C.; Saxena, S.; Adimurthy, S. J. Org. Chem. 2019, 84, 14151. |
| [96] | He, X.; Song, W.; Liu, X.; Huang, J.; Feng, R.; Zhou, S.; Hong, J.; Ge, X. Green Chem. 2023, 25, 1311. |
| [97] | Yu, W.; Wu, W.; Jiang, H. Chin. J. Chem. 2019, 37, 1158. |
| [98] | Yang, F.; He, G.-C.; Sun, S.-H.; Song, T.-T.; Min, X.-T.; Ji, D.-W.; Guo, S.-Y.; Chen, Q.-A. J. Org. Chem. 2022, 87, 14241. |
| [99] | Palani, T.; Park, K.; Song, K. H.; Lee, S. Adv. Synth. Catal. 2013, 355, 1160. |
| [100] | Li, Y.; Nie, C.; Wang, H.; Li, X.; Verpoort, F.; Duan, C. Eur. J. Org. Chem. 2011, 2011, 7331. |
| [101] | Nowrouzi, N.; Abbasi, M.; Latifi, H. Chin. J. Catal. 2016, 37, 1550. |
| [102] | Adib, M.; Sadeghi, V.; Veisi, H. Tetrahedron Lett. 2018, 59, 1928. |
| [103] | Li, G.; Yan, Q.; Gan, Z.; Li, Q.; Dou, X.; Yang, D. Org. Lett. 2019, 21, 7938. |
| [104] | Nowrouzi, N.; Abbasi, M.; Shahidzadeh, E. S. Appl. Organomet. Chem. 2023, 37, e6941. |
| [105] | Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454. |
/
| 〈 |
|
〉 |