综述与进展

芳香卤代物C—S偶联反应的研究进展

  • 秦思凝
展开
  • 沈阳大学师范学院化学系 沈阳 110044

收稿日期: 2023-03-29

  修回日期: 2023-05-31

  网络出版日期: 2023-06-26

Research Progress in C—S Coupling Reactions of Aryl Halides

  • Sining Qin
Expand
  • Department of Chemistry, Normal College, Shenyang University, Shenyang 110044

Received date: 2023-03-29

  Revised date: 2023-05-31

  Online published: 2023-06-26

摘要

含硫化合物在天然产物、药物、农药和材料中广泛存在, 具有多种生物活性或独特功能. C—S偶联反应是合成含硫化合物的重要方法, 是有机合成领域的研究热点之一. 随着对催化剂的深入开发和对含硫偶联反应物的不断扩展, 近年来涌现出大量的C—S偶联反应方法, 为含硫化合物的合成提供了便利. 芳香卤代烃是合成含硫化合物的主要底物, 通过设计不同的反应体系和含硫偶联反应物进行C—S偶联反应, 能够高效地合成硫酚、硫醚、二硫醚和砜等含硫化合物. 按照不同种类的含硫偶联反应物类型和催化剂种类(钯、铜和镍等)进行分类, 综述了近年来以芳香卤代烃为底物的C—S偶联反应, 并对代表性反应的机理做了简要说明和比较. 此外, 还对这一领域目前存在的问题和局限性进行简要分析, 并对未来发展方向提出展望.

本文引用格式

秦思凝 . 芳香卤代物C—S偶联反应的研究进展[J]. 有机化学, 2023 , 43(11) : 3761 -3783 . DOI: 10.6023/cjoc202303042

Abstract

Sulfur-containing compounds are widely found in natural products, pharmaceuticals, pesticides, and materials, possessing a variety of biological activities or unique functions. C—S coupling reaction is an important method for the synthesis of sulfur-containing compounds and is one of the hot spots in the field of organic synthesis. With the in-depth development of catalysts and the continuous expansion of sulfur-containing coupling partners, a large number of C—S coupling reactions have emerged in recent years, which greatly facilitate the synthesis of sulfur-containing compounds. Aryl halides are the main kind of substrates for the synthesis of sulfur-containing compounds. C—S coupling reactions of aryl halides and sulfur-containing coupling partners can efficiently afford sulfur-containing compounds, such as thiophenols, thioethers, disulfides and sulfones in different well-designed reaction systems. In this review, the C—S coupling reactions with aryl halides as substrates are reviewed according to the different types of sulfur-containing coupling partners and catalysts (palladium, copper, nickel, and others). The mechanisms of representative reactions are briefly described and compared. In addition, a brief analysis of the current situations and limitations in this field is given, and a prospect for future development is put forward.

参考文献

[1]
Shin, H. W.; Jin, X. H.; Gim, M. J.; Kim, I. H.; Kim, Y. Y. Anim. Biosci. 2023, 36, 776.
[2]
Liu, Z.; Li, M.; Wang, S.; Huang, H.; Zhang, W. Mar. Drugs 2022, 20, 765.
[3]
Shoaib, S.; Ansari, M. A.; Ghazwani, M.; Hani, U.; Jamous, Y. F.; Alali, Z.; Wahab, S.; Ahmad, W.; Weir, S.A.; Alomary, M.N.; Yusuf, N.; Islam, N. Cancers (Basel) 2023, 15, 697.
[4]
Domán, A.; Dóka, é.; Garai, D.; Bogdándi, V.; Balla, G.; Balla, J.; Nagy, P. Redox. Biol. 2023, 60, 102617.
[5]
Li, N. S. Acc. Chem. Res. 2011, 44, 1257.
[6]
Haruki, H.; Pedersen, M. G.; Gorska, K. I.; Pojer, F.; Johnsson, K. Science 2013, 340, 987.
[7]
Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
[8]
Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
[9]
Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
[10]
Jing, D.; Lu, C.; Chen, Z.; Jin, S.; Xie, L.; Meng, Z.; Su, Z.; Zheng, K. Angew. Chem., Int. Ed. 2019, 58, 14666.
[11]
Lu, C.J.; Xu, Q.; Feng, J.; Liu, R.R. Angew. Chem., Int. Ed. 2023, 62, e202216863.
[12]
Bisz, E.; Szostak, M. ChemSusChem 2017, 10, 3964.
[13]
Nasrollahzadeh, M. Molecules 2018, 23, 2532.
[14]
He, Z.; Wu, D.; Vessally, E. Top Curr. Chem. (Cham). 2020, 378, 46.
[15]
Zhao, W.; Zhang, F.; Deng, G. J. Org. Chem. 2021, 86, 291.
[16]
Karreman, S.; Karnbrock, S.B.H.; Kolle, S.; Golz, C.; Alcarazo, M. Org. Lett. 2021, 23, 1991.
[17]
Ru-Jian, Y.; Chun-Yan, Z.; Xiang, Z.; Xiong, Y.; Duan, X. Org. Biomol. Chem. 2021, 19, 2901.
[18]
Wang, Y.-D.; Li, F. -, H.; Zeng, Q.-L. Acta Chem. Sinica 2022, 80, 386. (in Chinese)
[18]
(王一丁, 李福海, 曾庆乐, 化学学报, 2022, 80, 386.)
[19]
Hanaya, K.; Ohtsu, H.; Kawano, M.; Higashibayashi, S.; Sugai, T. Asian J. Org.Chem. 2021, 10, 582.
[20]
Liu, Y.; Liu, S.; Xiao, Y. Beilstein J. Org. Chem. 2017, 13, 589.
[21]
Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069.
[22]
Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397.
[23]
Jiang, Z.; She, J.; Lin, X. Adv. Synth. Catal. 2009, 351, 2558.
[24]
Fernández-Rodríguez, M. A.; Hartwig, P. J. Chem.-Eur. J. 2010, 16, 2355.
[25]
Sayah, M.; Organ, M. G. Chem.-Eur. J. 2011, 17, 11719.
[26]
Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803.
[27]
Basu, B.; Mandal, B.; Das, S.; Kundu, S. Tetrahedron Lett. 2009, 50, 5523.
[28]
Kao, H.; Chen, C.; Wang, Y.; Lee, C. Eur. J. Org. Chem. 2011, 2011, 1776.
[29]
Baig, R. B.; Varma, R. S. J. Chem. Commun. 2012, 48, 2582.
[30]
Woo, H.; Mohan, B.; Heo, E.; Park, J.; Song, H.; Park, K. Nanoscale Res. Lett. 2013, 8, 390.
[31]
Priya, D. D.; Roopan, S. M.; Singh, S.; Bansal, J.; Shanavas, S.; Khan, M. R.; Al-Dhabi, N. A.; Arasu, M. V.; Duraipandiyan, V. Mater. Lett. 2020, 266, 127486.
[32]
Huang, Y.; Tsai, W.; Badsara, S. S.; Chan, C.; Lee, C. J. Chin. Chem. Soc. 2014, 61, 967.
[33]
Panova, Y. S.; Kashin, A. S.; Vorobev, M. G.; Degtyareva, E. S.; Ananikov, V. P. ACS Catal. 2016, 6, 3637.
[34]
Sengupta, D.; Basu, B. J. Org. Med. Chem. Lett. 2014, 4, 17.
[35]
Thomas, A. M.; Asha, S.; Sindhu, K. S.; Anilkumar, G. Tetrahedron Lett. 2015, 56, 6560.
[36]
Zhang, B.; Yang, L.; Shi, R.; Kang, Y. Chin. J. Org. Chem. 2016, 36, 352. (in Chinese)
[36]
(张变香, 杨丽花, 史瑞雪, 亢永强, 有机化学, 2016, 36, 352.)
[37]
Chen, C. W.; Chen, Y. L.; Reddy, D. M.; Du, K.; Li, C.; Shih, B.; Xue, Y.; Lee, C. F. Chem.-Eur. J. 2017, 23, 10087.
[38]
Li, Z.; Li, T.; Liu, J.; Wang, X. Tetrahedron 2020, 76,130915.
[39]
Panigrahi, R.; Sahu, S. K.; Behera, P. K.; Panda, S.; Rout, L. Chem.-Eur. J. 2020, 26, 620.
[40]
Bakare, S. P.; Patil, M. New J. Chem. 2022, 46, 6283.
[41]
Katla R.; Katla, R. New J. Chem. 2022, 46, 13918.
[42]
Singha, R.; Chettri, S.; Brahman, D.; Sinha, B.; Ghosh, P. Mol. Diversity 2022, 26, 505.
[43]
Zhang, J.; Medley, C. M.; Krause, J. A.; Guan, H. Organometallics 2010, 29, 6393.
[44]
Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760.
[45]
Guo, F.; Sun, J.; Xu, Z.; Kühn, F. E.; Zang, S.; Zhou, M. Catal. Commun. 2017, 96, 11.
[46]
Rodríguez-Cruz, M. A.; Hernández-Ortega, S.; Valdés, H.; Rufino-Felipe, E.; Morales-Morales, D. J. Catal. 2020, 383, 193.
[47]
Sikari, R.; Sinha, S.; Das, S.; Saha, A.; Chakraborty, G.; Mondal, R.; Paul, N. D. J. Org. Chem. 2019, 84, 4072.
[48]
Wang, Y.; Deng, L.; Wang, X.; Wu, Z.; Wang, Y.; Pan, Y. ACS Catal. 2019, 9, 1630.
[49]
Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
[50]
Talukder, M. M.; Miller, J. T.; Cue, J. M. O.; Udamulle, C. M.; Bhadran, A.; Biewer, M. C.; Stefan, M. C. Organometallics 2021, 40, 83.
[51]
Martin, M. T.; Marin, M.; Maya, C.; Prieto, A.; Nicasio, M. C. Chem.-Eur. J. 2021, 27, 12320.
[52]
Oechsner, R. M.; Wagner, J. P.; Fleischer, I. ACS Catal. 2022, 12, 2233.
[53]
Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 1697.
[54]
Li, L.; Wu, J.; Chen, R.; Zhou, Q.; Xu, T.; Jiang, H. J. Zhejiang Univ. (Sci. Ed.) 2012, 39, 313. (in Chinese)
[54]
(李龙彪, 吴剑娇, 陈仁尔, 周其忠, 徐土根, 蒋华江, 浙江大学学报(理学版), 2012, 39, 313.)
[55]
Zhu, Y. Y.; Lan, G.; Fan, Y.; Veroneau, S. S.; Song, Y.; Micheroni, D.; Lin, W. J. Angew. Chem., Int. Ed. 2018, 57, 14090.
[56]
Mohammadinezhad, A.; Akhlaghinia, B. J. New J. Chem. 2019, 43, 15525.
[57]
Yu, F.; Mao, R.; Yu, M.; Gu, X.; Wang, Y. J. J. Org. Chem. 2019, 84, 9946.
[58]
Franco, M.; Vargas, E. L.; Tortosa, M.; Cid, M. B. Chem. Commun. 2021, 57, 11653.
[59]
Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874.
[60]
Saini, V.; Khungar, B. New J. Chem. 2018, 42, 12796.
[61]
Wang, Y.; Zhang, X.; Liu, H.; Chen, H.; Huang, D. Org. Chem. Front. 2017, 4, 31.
[62]
Zhu, D. L.; Wu, Q.; Li, H. Y.; Li, H. X.; Lang, J. P. Chem. Eur. J. 2020, 26, 3484.
[63]
Yan, Q.; Cui, W.; Song, X.; Xu, G.; Jiang, M.; Sun, K.; Lv, J.; Yang, D. Org. Lett. 2021, 23, 3663.
[64]
Jiang, S.; Zhang, Z.-T.; Young, D. J.; Chai, L.-L.; Wu, Q.; Li, H.-X. Org. Chem. Front. 2022, 9, 1437.
[65]
Kang, J.; Li, Z.; Chen, C.; Dong, L.; Zhang, S. J. Org. Chem. 2021, 86, 15326.
[66]
Wang, Y.; Zhang, F.; Wang, Y.; Pan, Y. Eur. J. Org. Chem. 2022, 2022, 88.
[67]
Zhong, S.; Zhou, Z.; Zhao, F.; Mao, G.; Deng, G.-J.; Huang, H. Org. Lett. 2022, 24, 1865.
[68]
Liu, Y.; Xing, S.; Zhang, J.; Liu, W.; Xu, Y.; Zhang, Y.; Yang, K.; Yang, L.; Jiang, K.; Shao, X. Org. Chem. Front. 2022, 9, 1375.
[69]
Zhang, Y.; Liu, W.; Xu, Y.; Liu, Y.; Peng, J.; Wang, M.; Bai, Y.; Lu, H.; Shi, Z.; Shao, X. Org. Lett. 2022, 24, 6794.
[70]
Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Samadi, A. J. Mol. Catal. A: Chem. 2013, 377, 190.
[71]
Roy, S.; Phukan, P. J. Tetrahedron Lett. 2015, 56, 2426.
[72]
Nowrouzi, N.; Mohammad, A.; Hadis, L. Appl. Organomet. Chem. 2017, 31, e3579.
[73]
Magne, V.; Ball, L. T. Chem.-Eur. J. 2019, 25, 8903.
[74]
Iraqui, S.; Rashid, M. H. New J. Chem. 2022, 46, 22766.
[75]
Liu, Z.; Quyang, K.; Yang, N. Org. Biomol. Chem. 2018, 16, 988.
[76]
Xu, X.; Wang, W.; Lu, L.; Zhang, J.; Luo, J. Catal. Lett. 2022, 152, 3031.
[77]
Liu, Y.; Xu, Y.; Zhang, Y.; Gao, W.; Shao, X. Org. Chem. Front. 2022, 9, 6490.
[78]
Xu, Y.; Liu, Y.; Zhang, Y.; Yang, K.; Wang, Y.; Peng, J.; Shao, X.; Bai, Y. J. Org. Chem. 2023, 88, 2773.
[79]
Peng, K.; Gao, M.; Yi, Y.; Guo, J.; Dong, Z. Eur. J. Org. Chem. 2020, 2020, 1665.
[80]
Zhao, T.; Liang, F.; Cai, M.; Chen, J.; Kang, C.; Wang, H.; Wu, Q. Asian J. Org. Chem. 2020, 9, 214.
[81]
Sawada, N.; Itoh, T.; Yasuda, N. Tetrahedron Lett. 2006, 47, 6595.
[82]
Hoogenband, A.; Lange, J. H. M.; Bronger, R. P. J.; Terpstra, J. W. J. Tetrahedron Lett. 2010, 51, 6877.
[83]
Park, N.; Park, K.; Jang, M.; Lee, S. J. J. Org. Chem. 2011, 76, 4371.
[84]
Hopkins, B. A.; Zavesky, B.; White, D. J. Org. Chem. 2022, 87, 7547.
[85]
Soleiman-Beigi, M.; Mohammadi, F. J. Tetrahedron Lett. 2012, 53, 7028.
[86]
Prasad, D. J. C.; Sekar, G. J. Org. Lett. 2011, 13, 1008.
[87]
Soundarya, P.; Sekar, G. Org. Biomol. Chem. 2022, 20, 7405.
[88]
Tao, C.; Lv, A.; Zhao, N.; Yang, S.; Liu, X.; Zhou, J.; Liu, W.; Zhao, J. Synlett 2011, 134.
[89]
Soleiman-Beigi, M.; Hemmati, M. J. Appl. Organomet. Chem. 2013, 27, 734.
[90]
Zhang, W.; Huang, M.; Zou, Z.; Wu, Z.; Ni, S.; Kong, L.; Zheng, Y.; Wang, Y.; Pan. Y. Chem. Sci. 2021, 12, 2509.
[91]
Christian, A. H. J. Org. Chem. 2021, 86, 10914.
[92]
Chen, H. Y.; Peng, W. T.; Lee, Y. H.; Chang, Y. L.; Chen, Y. J.; Lai, Y. C.; Jheng, N. Y.; Chen, H. Y. Organometallics 2013, 32, 5514.
[93]
Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Org. Biomol. Chem. 2013, 11, 2943.
[94]
Rostami, A.; Rostami, A.; Iranpoor, N.; Zolfigol, M. A. Tetrahedron Lett. 2016, 57, 192.
[95]
Semwal, R.; Ravi, C.; Saxena, S.; Adimurthy, S. J. Org. Chem. 2019, 84, 14151.
[96]
He, X.; Song, W.; Liu, X.; Huang, J.; Feng, R.; Zhou, S.; Hong, J.; Ge, X. Green Chem. 2023, 25, 1311.
[97]
Yu, W.; Wu, W.; Jiang, H. Chin. J. Chem. 2019, 37, 1158.
[98]
Yang, F.; He, G.-C.; Sun, S.-H.; Song, T.-T.; Min, X.-T.; Ji, D.-W.; Guo, S.-Y.; Chen, Q.-A. J. Org. Chem. 2022, 87, 14241.
[99]
Palani, T.; Park, K.; Song, K. H.; Lee, S. Adv. Synth. Catal. 2013, 355, 1160.
[100]
Li, Y.; Nie, C.; Wang, H.; Li, X.; Verpoort, F.; Duan, C. Eur. J. Org. Chem. 2011, 2011, 7331.
[101]
Nowrouzi, N.; Abbasi, M.; Latifi, H. Chin. J. Catal. 2016, 37, 1550.
[102]
Adib, M.; Sadeghi, V.; Veisi, H. Tetrahedron Lett. 2018, 59, 1928.
[103]
Li, G.; Yan, Q.; Gan, Z.; Li, Q.; Dou, X.; Yang, D. Org. Lett. 2019, 21, 7938.
[104]
Nowrouzi, N.; Abbasi, M.; Shahidzadeh, E. S. Appl. Organomet. Chem. 2023, 37, e6941.
[105]
Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454.
文章导航

/