综述与进展

硅醚与硫(VI)氟化合物SuFEx点击反应进展

  • 张豪 ,
  • 赵庆彬 ,
  • 阮忠睿 ,
  • 刘振兴
展开
  • 郑州大学化学学院 郑州 450001

收稿日期: 2023-04-19

  修回日期: 2023-05-23

  网络出版日期: 2023-06-26

基金资助

国家自然科学基金(22101261); 河南省自然科学基金(232300421087)

Recent Development of SuFEx Reaction between Silyl Ethers and Sulfur(VI) Fluoride Compounds

  • Hao Zhang ,
  • Qingbin Zhao ,
  • Zhongrui Ruan ,
  • Zhenxing Liu
Expand
  • Collage of Chemistry, Zhengzhou University, Zhengzhou 450001

Received date: 2023-04-19

  Revised date: 2023-05-23

  Online published: 2023-06-26

Supported by

National Natural Science Foundation of China(22101261); Natural Science Foundation of Henan Province(232300421087)

摘要

SuFEx点击反应自2014年被提出以后取得了快速的进展, 分别从小分子制备与聚合物合成方面介绍硅醚与有机硫(VI)氟化合物之间的点击化学反应, 对目前发展的硅醚与硫(Ⅵ)氟化合物SuFEx典型点击反应重点按照底物类型进行了梳理, 探讨了未来的研究方向.

本文引用格式

张豪 , 赵庆彬 , 阮忠睿 , 刘振兴 . 硅醚与硫(VI)氟化合物SuFEx点击反应进展[J]. 有机化学, 2023 , 43(10) : 3569 -3579 . DOI: 10.6023/cjoc202304026

Abstract

The last decade has witnessed the great development of SuFEx reactions. The synthetic value of SuFEx reactions in the preparation of small molecules and polymers is reviewed. The paper is arranged based on the types of substrates and the possible direction of the reaction is discussed.

参考文献

[1]
Kolb H. C.; Finn M. G.; Sharpless K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
[2]
https://www.nobelprize.org/prizes/chemistry/2022/summary/
[3]
Dong J.; Krasnova L.; Finn M. G.; Sharpless K. B. Angew. Chem., Int. Ed. 2014, 53, 9430.
[4]
Dondoni A.; Marra A. Org. Biomol. Chem. 2017, 15, 1549.
[5]
Fattah T. A.; Saeed A.; Albericio F. J. Fluorine Chem. 2018, 213, 87.
[6]
Barrow A. S.; Smedley C. J.; Zheng. Q.; Li S.; Dong J.; Moses J. E. Chem. Soc. Rev. 2019, 48, 4731.
[7]
Lekkala R.; Lekkala R.; Moku B.; Rakesh K. P.; Qin H.-L. Org. Chem. Front. 2019, 6, 3490.
[8]
Xu L.; Dong J. Chin. J. Chem. 2020, 38, 414.
[9]
Lee C.; Cook A. J.; Elisabeth J. E.; Friede. N. C.; Sammis G. M.; Ball N. D. ACS Catal. 2021, 11, 6578.
[10]
Zheng J.; Mao Y.; Feng S.; Tian R. Chin. J. Chem. 2021, 39, 1843.
[11]
Ykman P.; Hall Jr. H. K. J. Organomet. Chem. 1976, 116, 153.
[12]
Gembus V.; Marsais F.; Levacher V. Synlett 2008, 1463.
[13]
Qin H.-L.; Zheng Q.; Bare G. A. L.; Wu P.; Sharpless K. B. Angew. Chem., Int. Ed. 2016, 55, 14155.
[14]
Smedley C. J.; Giel M.-C.; Molino A.; Barrow A. S.; Wilison D. J.; Moses J. E. Chem. Commun. 2018, 54, 6020.
[15]
Thomas J.; Fokin V. V. Org. Lett. 2018, 20, 3749.
[16]
Ungureanu A.; Levens A.; Candish L.; Lupton D. A. Angew. Chem., Int. Ed. 2015, 54, 11780.
[17]
Liu C.; Yang C.; Hwang S.; Ferraro S. L.; Flynn J. P.; Niu J. Angew. Chem., Int. Ed. 2020, 59, 18435.
[18]
Li S.; Wu P.; Moses J. E.; Sharpless K. B. Angew. Chem., Int. Ed. 2017, 56, 2903.
[19]
Gao B.; Li S.; Wu P.; Moses J. E.; Sharpless K. B. Angew. Chem., Int. Ed. 2018, 57, 1939.
[20]
Liang D.-D.; Streefkerk D. E.; Jordaan D.; Wagemakers J.; Baggerman J.; Zuilhof H. Angew. Chem., Int. Ed. 2020, 59, 7494.
[21]
Dong J.; Sharpless K. B.; Kwisnek L.; Oakdale J. S.; Fokin V. V. Angew. Chem., Int. Ed. 2014, 53, 9466.
[22]
Gao B.; Zhang L.; Zheng Q.; Zhou F.; Klivansky L. M.; Lu J.; Liu Y.; Dong J.; Wu P.; Sharpless K. B. Nat. Chem. 2017, 9, 1083.
[23]
Wang H.; Zhou F.; Ren G.; Zheng Q.; Chen H.; Gao B.; Klivansky L.; Liu Y.; Wu B.; Xu Q.; Lu J.; Sharpless K. B.; Wu P. Angew. Chem., Int. Ed. 2017, 56, 11203.
[24]
Li S.; Li G.; Gao B.; Pujari S. P.; Chen X.; Kim H.; Zhou F.; Klivansky L. M.; Liu Y.; Driss H.; Liang D.-D.; Lu J.; Wu P.; Zuilhof H.; Moses J.; Sharpless K. B. Nat. Chem. 2021, 13, 858.
[25]
Brendel J. C.; Martin L.; Zhang J.; Perrier S. Polym. Chem. 2017, 8, 7475.
[26]
Yang C.; Flynn J. P.; Niu J. Angew. Chem., Int. Ed. 2018, 57, 16194.
[27]
Li Z.; Ren X.; Sun P.; Ding H.; Li S.; Zhao Y.; Zhang K. ACS Macro Lett. 2021, 10, 223.
[28]
Li S.; Beringer L. T.; Chen S.; Averick S. Polymer 2015, 78, 37.
[29]
Oakdale J. S.; Kwisnek L.; Fokin V. V. Macromolecules 2016, 49, 4473.
文章导航

/