研究论文

铜催化烯醇硅醚与芳基亚磺酸钠合成β-酮砜的研究

  • 许力 ,
  • 吕兰兰 ,
  • 王香善
展开
  • 江苏师范大学化学与材料科学学院 江苏徐州 221116

收稿日期: 2023-04-20

  修回日期: 2023-06-02

  网络出版日期: 2023-06-26

基金资助

江苏省高校面上项目(22KJD150003); 2023年度江苏师范大学实验室研究课题(L2023YB08)

Copper-Catalyzed Synthesis of β-Keto Sulfones from Enol Silyl Ether and Sodium Arylsulfinates

  • Li Xu ,
  • Lanlan Lü ,
  • Xiangshan Wang
Expand
  • School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116

Received date: 2023-04-20

  Revised date: 2023-06-02

  Online published: 2023-06-26

Supported by

Higher Education Program in Jiangsu Province(22KJD150003); FY2023 Jiangsu Normal University Laboratory Research Project(L2023YB08)

摘要

β-酮砜是一类重要的含硫化合物和有机合成中间体, 被广泛应用于天然产物及许多重要有机化合物的构筑. 开发了一种溴化铜催化烯醇硅醚与芳基亚磺酸钠快速合成β-酮砜的方法, 具有操作简单、条件温和和反应时间短等优点.

本文引用格式

许力 , 吕兰兰 , 王香善 . 铜催化烯醇硅醚与芳基亚磺酸钠合成β-酮砜的研究[J]. 有机化学, 2023 , 43(10) : 3644 -3651 . DOI: 10.6023/cjoc202304029

Abstract

β-Keto sulfones are an important group of sulfur-containing compounds and intermediates for organic synthesis, which are widely used in the construction of natural products and various important organic compounds. A method for the rapid synthesis of β-keto sulfones catalyzed by copper bromide from enol silyl ether and sodium arylsulfinates is developed, which has the advantages of simple operation, mild conditions and short reaction time.

参考文献

[1]
Markitanov M.; Timoshenko V.; Shermolovich Y. J. Sulfur Chem. 2014, 35, 188.
[2]
Yang H.; Carter R.; Zakharov L. J. Am. Chem. Soc. 2008, 130, 9238.
[3]
Curti C.; Laget M.; Carle A.; Gellis A.; Vanelle P. Eur. J. Med. Chem. 2007, 42, 880.
[4]
Xiang J.; Ipek M.; Suri V.; Tam M.; Xing Y.; Huang N.; Zhang Y.; Tobin J.; Mansour T.; McKew J. Bioorg. Med. Chem. 2007, 15, 4396.
[5]
Xiang J.; Ipek M.; Suri V.; Massefski W.; Pan N.; Ge Y.; Tam M.; Xing Y.; Tobin J.; Xu X.; Tam S. Bioorg. Med. Chem. Lett. 2005, 15, 2865.
[6]
Peng H.; Cheng Y.; Ni N.; Li M.; Choudhary G.; Chou H.; Lu C.; Tai P.; Wang B. ChemMedChem 2009, 4, 1457.
[7]
Montgomery J.; Brown M.; Reilly U.; Price L.; Abramite J.; Arcari J.; Barham R.; Che Y.; Chen J.; Chung S.; Collantes E.; Desbonnet C.; Doroski M.; Doty J.; Engtrakul J.; Harris T.; Huband M.; Knafels J.; Leach K.; Liu S.; Marfat A.; McAllister L.; McElroy E.; Menard C.; Mitton-Fry M.; Mullins L.; Noe M.; O’Donnell J.; Oliver R.; Penzien J.; Plummer M.; Shanmuga- sundaram V.; Thoma C.; Tomaras A.; Uccello D.; Vaz A.; Wishka D. J. Med. Chem. 2012, 55, 1662.
[8]
Swenson R.; Sowin T.; Zhang H. J. Org. Chem. 2002, 67, 9182.
[9]
Manche?o O.; Tangen P.; Rohlmann R.; Fr?hlich R.; Alemán J. Chem.-Eur. J. 2011, 17, 984.
[10]
Chang M.; Cheng Y.; Lu Y. Org. Lett. 2014, 16, 6252.
[11]
Chang M.; Chen Y.; Chan C. Tetrahedron 2015, 71, 782.
[12]
Saraiva M.; Costa G.; Seus N.; Schumacher R.; Perin G.; Paix?o M.; Luque R.; Alves D. Org. Lett. 2015, 17, 6206.
[13]
Chang M.; Chen H.; Tsai Y. Org. Lett. 2019, 21, 1832.
[14]
Thomsen M.; Handwerker B.; Katz S.; Belser R. J. Org. Chem. 1988, 53, 906.
[15]
Katritzky A.; Abdel-Fattah A.; Wang M. J. Org. Chem. 2003, 68, 1443.
[16]
Suryakiran N.; Reddy T.; Ashalatha K.; Lakshman M.; Venkate- swarlu Y. Tetrahedron Lett. 2006, 47, 3853.
[17]
Suryakiran N.; Prabhakar P.; Rajesh K.; Suresh V.; Venkate- swarlu Y. J. Mol. Catal. A: Chem. 2007, 270, 201.
[18]
Trost B.; Curran D. Tetrahedron Lett. 1981, 22, 1287.
[19]
Cooper G.; Dolby L. Tetrahedron Lett. 1976, 17, 4675.
[20]
Mao R.; Yuan Z.; Li Y.; Wu J. Chem.-Eur. J. 2017, 23, 8176.
[21]
Liu T.; Zheng D.; Ding Y.; Fan X.; Wu J. Chem.-Asian J. 2017, 12, 465.
[22]
Gong X.; Ding Y.; Fan X.; Wu J. Adv. Synth. Catal. 2017, 359, 2999.
[23]
He F.-S.; Yao Y.; Xie W.; Wu J. Chem. Commuun. 2020, 56, 9469.
[24]
Ye S.; Li X.; Xie W.; Wu J. Eur. J. Org. Chem. 2020, 2020, 1274.
[25]
Ghosh S.; Samanta S.; Ghosh A, K.; Neogi S.; Hajra A. Adv. Synth. Catal. 2020, 362, 4552
[26]
Tang X.; Huang L.; Xu Y.; Yang J.; Wu W.; Jiang H. Angew. Chem., Int. Ed. 2014, 53, 4205.
[27]
Tang Y.; Zhang Y.; Wang K.; Li X.; Xu X.; Du X. Org. Biomol. Chem. 2015, 13, 7084.
[28]
Tang Y.; Fan Y.; Gao H.; Li X.; Xu X. Tetrahedron Lett. 2015, 56, 5616.
[29]
Yadav V. K.; Srivastava V. P.; Yadav L. D. S. Synlett 2016, 27, 427.
[30]
Lu Q.; Chen J.; Liu C.; Huang Z.; Peng P.; Wang H.; Lei A. RSC Adv. 2015, 5, 24494.
[31]
Wang H.; Wang G.; Lu Q.; Chiang C.-W.; Peng P.; Zhou J.; Lei A. Chem.-Eur. J. 2016, 22, 14489.
[32]
Xu J.; Shen C.; Qin X.; Wu J.; Zhang P.; Liu X. J. Org. Chem. 2021, 86, 3706.
[33]
Singh A.; Chawla R.; Yadav L. Tetrahedron Lett. 2014, 55, 2845.
[34]
Xiong Y.; Weng J.; Lu G. Adv. Synth. Catal. 2018, 360, 1611.
[35]
Ning Z.; Xu Z.; Liu R.; Du Z. Synth. Commun. 2021, 51, 3492.
[36]
Xu J.; Shen C.; Qin X.; Wu J.; Zhang P.; Liu X. J. Org. Chem. 2021, 86, 3706.
[37]
Rawat V.; Reddy P.; Sreedhar B. RSC Adv. 2014, 4, 5165.
[38]
Xia J.; Huang X.; You S.; Cai M. Appl. Organomet. Chem. 2019, 33, e5001.
[39]
Cai S.; Chen D.; Xu Y.; Weng W.; Li L.; Zhang R.; Huang M. Org. Biomol. Chem. 2016, 14, 4205.
[40]
Kumar N.; Kumar A. ACS Sustainable Chem. Eng. 2019, 7, 9182.
[41]
Lin B.; Kuang J.; Chen J.; Hua Z.; Khakyzadeh V.; Xia Y. Org. Chem. Front. 2019, 6, 2647.
[42]
Tang Y.; Zhang Y.; Wang K.; Li X.; Xu X.; Du X. Org. Biomol. Chem. 2015, 13, 7084.
[43]
Katrun P.; Songsichan T.; Soorukram D.; Pohmakotr M.; Reutrakul V.; Kuhakarn C. Synthesis 2017, 49 1109.
[44]
Deng S.; Liang E.; Wu Y.; Tang X. Tetrahedron Lett. 2018, 59, 3955.
[45]
Yavari I.; Shaabanzadeh S. Org. Lett. 2020, 22, 464.
文章导航

/