综述与进展

1,4-吡啶硫内鎓盐在有机合成中的研究与应用

  • 侯学会 ,
  • 李议慧 ,
  • 张庆玲 ,
  • 刘俊桃 ,
  • 陈亚静
展开
  • a 河南牧业经济学院理学部 郑州 450046
    b 郑州大学药学院 郑州 450001

收稿日期: 2023-05-12

  修回日期: 2023-06-14

  网络出版日期: 2023-06-26

基金资助

国家自然科学基金(22201267); 河南省科技攻关(232102111051); 河南省科技攻关(232102110019); 河南省科技攻关(232102320289)

Research and Application of Pyridinium 1,4-Zwitterionic Thiolates in Organic Synthesis

  • Xuehui Hou ,
  • Yihui Li ,
  • Qingling Zhang ,
  • Juntao Liu ,
  • Yajing Chen
Expand
  • a Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046
    b School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001

Received date: 2023-05-12

  Revised date: 2023-06-14

  Online published: 2023-06-26

Supported by

National Natural Science Foundation of China(22201267); Key Scientific and Technological Project of Henan Province(232102111051); Key Scientific and Technological Project of Henan Province(232102110019); Key Scientific and Technological Project of Henan Province(232102320289)

摘要

1,4-吡啶硫内鎓盐是一类重要的氮硫杂合成子, 其中的吡啶片段既可以作为离去基团, 也可以作为亲电反应位点参与反应, 构建多种类型的氮硫杂骨架. 因此, 近年来1,4-吡啶硫内鎓盐在含氮、含硫杂环化合物的合成应用中受到了极大的关注. 基于此, 系统综述了1,4-吡啶硫内鎓盐在两种反应模式([3+m]和[5+m]环合反应)下构建氮硫杂环的研究进展, 总结了其在环合反应及杂环化学中的应用, 并对该领域的研究前景进行了展望.

本文引用格式

侯学会 , 李议慧 , 张庆玲 , 刘俊桃 , 陈亚静 . 1,4-吡啶硫内鎓盐在有机合成中的研究与应用[J]. 有机化学, 2023 , 43(11) : 3844 -3860 . DOI: 10.6023/cjoc202305013

Abstract

Pyridinium 1,4-zwitterionic thiolates are important sulfur- and nitrogen-containing synthons, in which the pyridine fragments can act as leaving groups, but also as electrophilic sites, constructing various types of sulfur- and nitrogen-hetero- cycles. Hence, pyridinium 1,4-zwitterionic thiolates have attracted much attention on the synthesis for N-containing and S-containing heterocyclic compounds in recent years. The progress of pyridinium 1,4-zwitterionic thiolates participated annulation via [3+m] and [5+m] modes is reviewed, their applications on constructing N- and S-heterocyclic rings are summarized, and their future prospects are discussed.

参考文献

[1]
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[2]
Zhang, J.; Zhang, C.; Zheng, Z.; Zhou, P.; Liu, W. Chin. J. Org. Chem. 2022, 42, 2745. (in Chinese)
[2]
(张建涛, 张聪, 郑梓栋, 周鹏, 刘卫兵, 有机化学, 2022, 42, 2745.)
[3]
Bhorali, P.; Sultana, S.; Gogoi, S. Asian J. Org. Chem. 2022, 11, e202100754.
[4]
Sundaravelu, N.; Sangeetha, S.; Sekar, G. Org. Biomol. Chem. 2021, 19, 1459.
[5]
Xiao, L.; Liu, G.; Ren, P.; Wu, T.; Lu, Y.; Kong, J. Chin. J. Org. Chem. 2022, 42, 1002. (in Chinese)
[5]
(肖立伟, 刘光灿, 任萍, 吴彤桐, 卢玉伟, 孔洁, 有机化学, 2022, 42, 1002.)
[6]
Moafi, L.; Ahadi, S.; Khavasi, H. R.; Bazgir, A. Synthesis 2011, 1399.
[7]
Cheng, B.; Wang, T. In Encyclopedia of Reagents for Organic Synthesis, Wiley-Interscience, Hoboken, 2021, pp. 1-4.
[8]
Wang, Z.-H.; You, Y.; Zhao, J.-Q.; Zhang, Y.-P.; Yin, J.-Q.; Yuan, W.-C. Molecules 2023, 28, 3059.
[9]
Huang, J.; Zhang, L.; Meng, X. Org. Chem. Front. 2023, 10, 2813.
[10]
Cheng, B.; Li, Y.; Wang, T.; Zhang, X.; Li, H.; Li, Y.; Zhai, H. Chem. Commun. 2019, 55, 14606.
[11]
Zhai, S.; Zhang, X.; Cheng, B.; Li, H.; Li, Y.; He, Y.; Wang, T.; Zhai, H. Chem. Commun. 2020, 56, 3085.
[12]
Cheng, B.; Duan, X.; Li, Y.; Zhang, X.; Li, H.; Wu, F.; Li, Y.; Wang, T.; Zhai, H. Eur. J. Org. Chem. 2020, 1896.
[13]
Wang, T.; Zhu, X.; Tao, Q.; Xu, W.; Sun, H.; Wu, P.; Cheng, B.; Zhai, H. Chin. Chem. Lett. 2021, 32, 3972.
[14]
Cheng, B.; Bao, B.; Xu, W.; Li, Y.; Li, H.; Zhang, X.; Li, Y.; Wang, T.; Zhai, H. Org. Biomol. Chem. 2020, 18, 2949.
[15]
Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926.
[16]
Liao, H.-H.; Minoza, S.; Lee, S.-C.; Rueping, M. Chem.-Eur. J. 2022, 28, e202201112.
[17]
Happy, S.; Junaid, M.; Yadagiri, D. Chem. Commun. 2023, 59, 29.
[18]
Wang, C.-C.; Liu, X.-H.; Wang, X.-L.; Cui, H.-P.; Ma, Z.-W.; Ding, D.; Liu, J.-T.; Meng, L. Chen, Y.-J. Adv. Synth. Catal. 2022, 364, 296.
[19]
Zhang, L.; Fang, L.; Huang, H.; Wang, C.; Gao, F.; Wang, Z. J. Org. Chem. 2021, 86, 18156.
[20]
He, Y.; Wu, P.; Zhang, X.; Wang, T.; Tao, Q.; Tao, Q.; Zhou, K.; Ouyang, Z.; Zhai, H.; Cheng, D.-J.; Cheng, B. Org. Chem. Front. 2022, 9, 4612.
[21]
Wang, C.-C.; Yang, Y.-T.; Wang, Q.-L.; Liu, X.-H.; Chen, Y.-J. Org. Chem. Front. 2022, 9, 4271.
[22]
Yao, Y.; Lin, B.; Wu, M.; Zhang, Y.; Huang, Y.; Han, X.; Han, X.; Weng, Z. Org. Biomol. Chem. 2022, 20, 8761.
[23]
Cheng, B.; Li, Y.; Wang, T.; Zhang, X.; Li, H.; He, Y.; Li, Y.; Zhai, H. J. Org. Chem. 2020, 85, 6794.
[24]
Cheng, B.; Zhang, X.; Li, Y.; Li, H.; He, Y.; Li, Y.; Wang, T.; Zhai, H. Chem. Commun. 2020, 56, 8396.
[25]
Singh, G. S.; Mmatli, E. E. Eur. J. Med. Chem. 2011, 46, 5237.
[26]
Sharma, V.; Kumar, V. Med. Chem. Res. 2014, 23, 3593.
[27]
Kim, E.; Lee, Y.; Lee, S.; Park, S. B. Acc. Chem. Res. 2015, 48, 538.
[28]
Cheng, B.; Li, H.; Duan, S.; Zhang, X.; He, Y.; Li, Y.; Wang, T.; Zhai, H. Org. Biomol. Chem. 2020, 18, 6253.
[29]
Cheng, B.; Zhang, X.; Li, H.; He, Y.; Li, Y.; Sun, H.; Wang, T.; Zhai, H. Adv. Synth. Catal. 2020, 362, 4668.
[30]
Jin, Q.; Jiang, C.; Gao, M.; Zhang, D.; Hu, S.; Zhang, J. J. Org. Chem. 2021, 86, 15640.
[31]
Li, T.-T.; You, Y.; Sun, T.-J.; Zhang, Y.-P.; Zhao, J.-Q.; Wang, Z.-H.; Yuan, W.-C. Org. Lett. 2022, 24, 5120.
[32]
Sun, S.; Wei, Y.; Xu, J. Org. Lett. 2022, 24, 6024.
[33]
Wei, Y.; Sun, S.; Xu, J. Tetrahedron Lett. 2023, 120, 154444.
[34]
Monreal-Corona, R.; Díaz-Jiménez, à; Roglans, A.; Poster, A.; Pla-Quintana, A. Adv. Synth. Catal. 2023, 365, 760.
[35]
Li, W.; Wang, H.; Zhang, Y.; Zhao, L.; Guo, P.; Cao, H.; Liu, X. J. Org. Chem. 2023, 88, 7199.
[36]
Sun, S.; Wei, Y.; Xu, J. Org. Lett. 2023, 25, 2868.
[37]
Cheng, B.; Li, Y.; Zhang, X.; Duan, S.; Li, H.; He, Y.; Li, Y.; Wang, T.; Zhai, H. Org. Lett. 2020, 22, 5817.
[38]
Duan, S.; Chen, C.; Chen, Y.; Jie, Y.; Luo, H.; Xu, Z.-F.; Cheng, B.; Li, C.-Y. Org. Chem. Front. 2021, 8, 6962.
[39]
Sun, S.; Wei, Y.; Xu, J. Chem. Commun. 2023, 59, 239.
文章导航

/