综述与进展

高亮度近红外荧光染料研究进展

  • 邱建文 ,
  • 刘梦 ,
  • 熊新怡 ,
  • 高勇 ,
  • 朱虎
展开
  • a 福建师范大学化学与材料学院 福州 350117
    b 福建师范大学 福建省高分子材料重点实验室 福建省先进材料化工基础重点实验室 福州 350117
    c 福建省师范大学 生物医学材料与组织工程闽台科技合作基地 工业生物催化福建省高校工程研究中心 医学光电科学与技术教育部重点实验室 福州 350117

收稿日期: 2023-03-29

  修回日期: 2023-06-18

  网络出版日期: 2023-07-06

基金资助

国家自然科学基金(U1805234); 福建省自然科学基金(2021J01147); 福建省高校创新团队培育计划、福建省百人计划、中央引导地方科技专项资金(2020L3008)

Research Progress in High Brightness Near Infrared Fluorescent Dyes

  • Jianwen Qiu ,
  • Meng Liu ,
  • Xinyi Xiong ,
  • Yong Gao ,
  • Hu Zhu
Expand
  • a College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117
    b Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350117
    c Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350117

Received date: 2023-03-29

  Revised date: 2023-06-18

  Online published: 2023-07-06

Supported by

National Natural Science Foundation of China(U1805234); Natural Science Foundation of Fujian Province(2021J01147); Program for Innovative Research Team in Science and Technology in Fujian Province University, the 100 Talents Program of Fujian Province and the Special Funds of the Central Government Guiding Local Science and Technology Development(2020L3008)

摘要

近红外光(650~1700 nm)在生物成像中具有组织穿透深度大、受生物体自身荧光干扰小和对生物体光损伤小等优点. 因此, 近红外染料已成为生物成像新的研究热点. 近红外荧光染料较窄的能量带隙使激发态非辐射跃迁几率增大, 导致荧光强度大幅降低. 同时较长的共轭疏水骨架及强大的分子电荷转移能力, 使他们容易与外部分子交互, 从而加剧非辐射能量损耗增加, 致使荧光强度降低. 为了获取高亮度近红外荧光染料, 研究人员针对近红外染料做了很多改进和修饰. 从荧光染料的结构-性质关系角度, 综述了目前主流的高亮度近红外染料的发展情况, 希望能为发展高亮度近红外荧光染料提供帮助和指导.

关键词: 高亮度; 近红外; 荧光; 染料

本文引用格式

邱建文 , 刘梦 , 熊新怡 , 高勇 , 朱虎 . 高亮度近红外荧光染料研究进展[J]. 有机化学, 2023 , 43(11) : 3745 -3760 . DOI: 10.6023/cjoc202303043

Abstract

Abstract Due to the merits of near-infrared light (NIR) (650~1700 nm), such as deep tissue penetration, lower autofluore- scence interference in vivo, and little light damage to organisms, NIR dyes have been one of the research focuses in bioimaging. The narrow bandgaps of NIR dyes increase the probability of non-radiative transition of the excited state, resulting in a significant reduction of fluorescence intensity. Meanwhile, the longer conjugated hydrophobic skeleton and strong molecular charge transfer ability make NIR dyes easy to interact with external molecules, thus increasing the non-radiative energy loss and reducing the fluorescence intensity. To obtain NIR dyes with high brightness, researchers have made many improvements and modifications. From the perspective of the structure-property relationship of fluorescent dyes, the development of mainstream high-brightness near-infrared dyes is reviewed, hoping to provide assistance and guidance for the development of NIR fluorescent dyes with high-brightness.

参考文献

[1]
(a) Lei, Z.; Zhang, F. Angew. Chem., Int. Ed. 2021, 60, 16294.
[1]
(b) Chen, Y.; Chen, S.; Yu, H.; Wang, Y.; Cui, M.; Wang, P; Sun, P.; Ji, M. Adv. Healthcare Mater. 2022, 11, 2201158.
[1]
(c) Yan, C.; Zhang, Y.; Guo, Z. Coord. Chem. Rev. 2021, 427, 213556.
[1]
(d) Wang, Z.; Geng, H.; Nie, C.; Xing, C. Chin. J. Chem. 2022, 40, 759.
[1]
(e) He, Y.; Liao, S.; Wang, Y. Chin. J. Chem. 2021, 39, 1435.
[2]
(a) Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Chem. Soc. Rev. 2009, 38, 2410.
[2]
(b) Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.
[2]
(c) Cavazos‐Elizondo, D.; Aguirre‐Soto, A. Analysis Sensing 2022, 2, e202200004.
[2]
(d) Karaman, O.; Alkan, G. A.; Kizilenis, C.; Akgul, C. C.; Gunbas, G. Coord. Chem. Rev. 2023, 475, 214841.
[3]
(a) Khan, Z.; Sekar, N. Dyes Pigm. 2022, 110735.
[3]
(b) Wang, L.; Du, W.; Hu, Z.; Uvdal, K.; Lin, L.; Huang, W. Angew. Chem., Int. Ed. 2019, 58, 14026.
[3]
(c) Li, J.; Zhao, M.; Huang, J.; Liu, P.; Luo, X.; Zhang, Y.; Yan, C.; Zhu, W.; Guo, Z. Coord. Chem. Rev. 2022, 473, 214813.
[3]
(d) Bumagina, N. A.; Antina, E. V.; Ksenofontov, A. A.; Antina, L. A.; Kalyagin, A. A.; Berezin, M. B. Coord. Chem. Rev. 2022, 469, 214684.
[3]
(e) Liu, B.; Wang, C.; Qian, Y. Acta Chim. Sinica 2022, 80,1071. (in Chinese)
[3]
(刘巴蒂, 王承俊, 钱鹰, 化学学报, 2022, 80, 1071.)
[4]
(a) Poronik, Y. M.; Vygranenko, K. V.; Gryko, D.; Gryko, D. T. Chem. Soc. Rev. 2019, 48, 5242.
[4]
(b) Zhu, S.; Tian, R.; Antaris, A. L.; Chen, X.; Dai, H. Adv. Mater. 2019, 31, 1900321.
[4]
(c) Ni, Y.; Wu, J. Org. Biomol. Chem. 2014, 12, 3774.
[5]
(a) Mayerh?ffer, U.; Fimmel, B.; Würthner, F. Angew. Chem., Int. Ed. 2012, 51, 164.
[5]
(b) Zhou, E. Y.; Knox, H. J.; Liu, C.; Zhao, W.; Chan, J. J. Am. Chem. Soc. 2019, 141, 17601.
[6]
(a) Umezawa, K.; Citterio, D.; Suzuki, K. Anal. Sci. 2014, 30, 327.
[6]
(b) Wu, J.; Shi, Z.; Zhu, L.; Li, J.; Han, X.; Xu, M.; Hao, S.; Fan, Y.; Shao, T.; Bai, H.; Peng, B.; Hu, W.; Liu, X.; Yao, C.; Li, L.; Huang, W. Adv. Opt. Mater. 2022, 10, 2102514.
[7]
Kowada, T.; Maeda, H.; Kikuchi, K. Chem. Soc. Rev. 2015, 44, 4953.
[8]
Sun, W.; Guo, S.; Hu, C.; Fan, J.; Peng, X. Chem. Rev. 2016, 116, 7768.
[9]
(a) Chen, X, Pradhan, T, Wang, F, Kim, J. S.; Yoon, J. Chem. Rev. 2012, 112, 1910.
[9]
(b) Zhao, M.; Guo, Y.; Xu, W.; Zhao, Y.; Xie, H.; Li, H.; Chen, X.; Zhao, R.; Guo, D. Trends Anal. Chem. 2020, 122, 115704.
[9]
(c) Liu, D.; He, Z.; Zhao, Y.; Yang, Y.; Shi, W.; Li, X.; Ma, H. J. Am. Chem. Soc. 2021, 143, 17136.
[10]
(a) Wang, C.; Chi, W.; Qiao, Q.; Tan, D.; Xu, Z.; Liu, X. Chem. Soc. Rev. 2021, 50, 12656.
[10]
(b) Lv, X.; Gao, C.; Han, T.; Shi, H.; Guo, W. Chem. Commun. 2020, 56, 715.
[11]
(a) Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. ACS Chem. Biol. 2011, 6, 600.
[11]
(b) Ogasawara, A.; Kamiya, M.; Sakamoto, K.; Kuriki, Y.; Fujita, K.; Komatsu, T.; Ueno, T.; Hanaoka, K.; Onoyama, H.; Abe, H.; Tsuji, Y.; Fujishiro, M.; Koike, K.; Fukayama, M.; Seto, Y.; Urano, Y. Bioconjugate Chem. 2019, 30, 1055.
[11]
(c) Tang, W.; Gao, H.; Li, J.; Wang, X.; Zhou, Z.; Gai, L.; Feng, X. J.; Tian, J.; Lu, H.; Guo, Z. Chem. Asian J. 2020, 15, 2724.
[12]
Koide, Y.; Urano, Y.; Hanaoka, K.; Piao, W.; Kusakabe, M.; Saito, N.; Terai, T.; Okabe, T.; Nagano, T. J. Am. Chem. Soc. 2012, 134, 5029.
[13]
Zhou, X.; Lai, R.; Beck, J. R.; Li, H.; Stains, C. I. Chem. Commun. 2016, 52, 12290.
[14]
Ren, T.; Xu, W.; Zhang, W.; Zhang, X.; Wang, Z.; Xiang, Z.; Yuan, L.; Zhang, X. J. Am. Chem. Soc. 2018, 14, 7716.
[15]
Li, J.; Dong, Y.; Wei, R.; Jiang, G.; Yao, C.; Lv, M.; Wu, Y.; Gardner, S. H.; Zhang, F.; Lucero, M. Y.; Huang, J.; Chen, H.; Ge, H.; Chan, J.; Chen, J.; Sun, H.; Luo, X.; Qian, X.; Yang, Y. J. Am. Chem. Soc. 2022, 144, 14351.
[16]
Jiang, G.; Ren, T-B.; Este, E. D.; Xiong, M.; Xiong, B.; Johnsson, K.; Zhang, X-B.; Wang, L.; Yuan, L. Nat. Commun. 2022, 13, 2264.
[17]
Jiang, G.; Lou, X.-F.; Zuo, S.; Liu, X.; Ren, T.-B.; Wang, L.; Zhang, X.-B.; Yuan, L. Angew. Chem., Int. Ed. 2023, 135, e202218613.
[18]
Grimm, J. B.; English, B. P.; Chen, J.; Slaughter, J. P.; Zhang, Z.; Revyakin, A.; Patel, R.; Macklin, J. J.; Normanno, D.; Singer, R. H.; Lionnet, T.; Lavis, L. D. Nat. Methods 2015, 12, 244.
[19]
Lv, X.; Gao, C.; Han, T.; Shi, H.; Guo, W. Chem. Commun. 2020, 56, 715.
[20]
Liu, J.; Sun, Y.; Zhang, H.; Shi, H.; Shi, Y.; Guo, W. ACS Appl. Mater. Interfaces 2016, 8, 22953.
[21]
Grzybowski, M.; Taki, M.; Senda, K.; Sato, Y.; Ariyoshi, T.; Okada, Y.; Kawakami, R.; Imamura, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2018, 57, 10137.
[22]
Song, Y.; Zhang, X.; Shen, Z.; Yang, W.; Wei, J.; Li, S.; Wang, X.; Li, X.; He, Q.; Zhang, S.; Zhang, S.; Zhang, Q.; Gao, B. Anal. Chem. 2020, 92, 12137.
[23]
Liu, D.; He, Z.; Zhao, Y.; Yang, Y.; Shi, W.; Li, X.; Ma. H. J. Am. Chem. Soc. 2021, 143, 17136.
[24]
(a) Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77.
[24]
(b) Wu, P.; Zhu, Y.; Liu, S.; Xiong, H. ACS Cent. Sci. 2021, 7, 2039.
[24]
(c) Cheng, H.; Cao, X.; Zhang, S.; Zhang, K.; Cheng, Y.; Wang, J.; Zhao, J.; Zhou, L.; Liang, X.; Yoon, J. Adv. Mater. 2022, 2207546.
[25]
Ziessel, R.; Rihn, S.; Harriman, A. Chem. Eur. J. 2010, 16, 11942.
[26]
Li, Y.; Qiao, Z.; Li, T.; Zeika, O.; Leo, P. ChemPhotoChem 2018, 2, 1017.
[27]
Rappitsch, T.; Borisov, S. M. Chem.-Eur. J. 2021, 27, 10685.
[28]
Chen, J.; Mizumura, M.; Shinokubo, H.; Osuka, A. Chem. Eur. J. 2009, 15, 5942.
[29]
Zhang, H.; Liu, J.; Sun, Y-Q.; Liu, M.; Guo, W. J. Am. Chem. Soc. 2020, 142, 17069.
[30]
Taguchi, D.; Nakamura, T.; Horiuchi, H.; Saikawa, M.; Nabeshima, T. J. Org. Chem. 2018, 83, 5331.
[31]
Deckers, J.; Cardeynaels, T.; Doria, S.; Tumanov, N.; Lapini, A.; Ethirajan, A.; Ameloot, M.; Wouters, J.; Donato, M. D.; Champagne, B.; Maes, W. J. Mater. Chem. C 2022, 10, 9344.
[32]
Killoran, J.; Allen, L.; Gallagher, J. F.; Gallagherb, W. M.; O′Shea, D. F. Chem. Commun. 2002, 17, 1862.
[33]
Gorman, A.; Killoran, J.; O'Shea, C.; Kenna, T.; Gallagher, W. M.; O'Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619.
[34]
Jiao, L.; Wu, Y.; Ding, Y.; Wang, S.; Zhang, P.; Yu, C.; Wei, Y.; Mu, X.; Hao, E. Chem.-Eur. J. 2014, 9, 805.
[35]
Lv, X.; Han, T.; Wu, Y.; Zhang, B.; Guo, W. Chem. Commun. 2021, 57, 9744.
[36]
Bai, L.; Sun, P.; Liu, Y.; Zhang, H.; Hu, W.; Zhang, W.; Liu, Z.; Fan, Q.; Li, L.; Huang, W. Chem. Commun. 2019, 55, 10920.
[37]
Zhang, Q.; Peng, Y. P.; Fan, Y.; Sun, C.; He, H.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhang, F. Angew. Chem. Int. Ed. 2021, 60, 3967.
[38]
(a) Mustroph, H. Phys. Sci. Rev. 2020, 5(5), 20190145.
[38]
(b) Li, Y.; Zhou, Y.; Yue, X.; Dai, Z. Adv. Healthcare Mater. 2020, 9, 2001327.
[39]
Matikonda, S. S.; Hammersley, G.; Kumari, N.; Grabenhorst, L.; Glembockyte, V.; Tinnefeld, P.; Ivanic, J.; Levitus, M.; Schner- mann, M. J. J. Org. Chem. 2020, 85, 5907.
[40]
Ran, X.; Chen, P.; Liu, Y.; Shi, L.; Chen, X.; Liu, Y.; Zhang, H.; Zhang, L.; Kun Li, K.; Yu, X. Adv. Mater. 2023, 35, 2210179.
[41]
Li, D. H.; Schreiber, C. L.; Smith, B. D. Angew. Chem., Int. Ed 2020, 132, 2252.
[42]
Li, D.-H.; Gamage, R. S.; Oliver, A. G.; Patel, N. L.; Usama, S. M.; Kalen, J. D.; Schnermann, M. J.; Smith, B. D. Angew. Chem., Int. Ed. 2023, e202305062.
[43]
Cosco, E. D.; Caram, J. R.; Bruns, O. T.; Franke, D.; Day, R. A.; Farr, E. P.; Bawendi, G. M.; Sletten, E. M. Angew. Chem., Int. Ed. 2017, 56, 13126.
[44]
Cosco, E. D.; Arús, B. A.; Spearman, A. L.; Atallah, T. L.; Lim, I.; Leland, O. S.; Caram, J. R.; Bischof, T. S.; Bruns, O. T.; Sletten, E. M. J. Am. Chem. Soc. 2021, 143, 6836.
[45]
Ndaleh, D.; Smith, C.; Yaddehige, M. L.; Shaik, A. K.; Watkins, D. L.; Hammer, N. I.; Delcamp, J. H. J. Org. Chem. 2021, 86, 15376.
[46]
Mujumdar, S. R.; Mujumdar, R. B.; Grant, C. M.; Waggoner, A. S. Bioconjugate Chem. 1996, 7, 356.
[47]
Cha, J.; Nani, R. R.; Luciano, M. P.; Kline, G.; Broch, A.; Kim, K.; Namgoong, J.-M.; Kulkarni, R. A.; Meier, J. L.; Kim, P.; Schner- mann, M. J. Bioorg. Med. Chem. Lett. 2018, 28, 2741.
[48]
Luciano, M. P.; Crooke, S. N.; Nourian, S.; Dingle, I.; Nani, R. R.; Gabriel Kline, G.; Patel, N. L.; Robinson, C. M.; Difilippantonio, S.; Kalen, J. D.; Finn, M. G.; Schnermann, M. J. ACS Chem. Biol. 2019, 14, 934.
[49]
(a) Anzalone, A. V.; Wang, T. Y.; Chen, Z.; Cornish V. W. Angew. Chem., Int. Ed. 2013, 125, 650.
[49]
(b) Pauff, S. M.; Miller, S. C. J. Org. Chem. 2013, 78, 711.
[50]
(a) Shang, J.; Zhang, X.; He, Z.; Shen, S.; Liu, D.; Shi, W.; Ma, H. Angew. Chem., Int. Ed. 2022, 61, e2022050.
[50]
(b) Li, W.; Yin, S.; Shen, Y.; Li, H.; Yuan, L.; Zhang, X.-B. J. Am. Chem. Soc. 2023, 145, 3736.
[50]
(c) Wei, P.; Guo, Y.; Liu, L.; Zhou, X.; Yi, T. J. Mater. Chem. B 2022, 10, 5211.
[51]
Wang, C.; Qiao, Q.; Chi, W.; Chen, J.; Liu, W.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X.-F.; Zhou, W.; Xu, N.; Zhang, Q.; Xu, Z.; Liu, X. Angew. Chem., Int. Ed. 2020, 59, 10160.
[52]
Wang, L.; Liu, J.; Zhao, S.; Zhang, H.; Sun, Y.; Wei, A.; Guo, W. Chem. Commun. 2020, 56, 7718.
[53]
For the properties of ATTO dyes, see:
[54]
(a) Yuan, L.; Lin, W.; Yang, Y.; Chen, H. J. Am. Chem. Soc. 2012, 134, 1200.
[54]
(b) Yuan, L.; Weiying Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. J. Am. Chem. Soc. 2012, 134, 13510.
[55]
Chen, H.; Lin, W.; Cui, H.; Jiang, W. Chem.-Eur. J. 2015, 21, 733.
[56]
Ren, T.-B.; Wang, Z.-Y.; Xiang, Z.; Lu, P.; Lai, H.-H.; Yuan, L.; Zhang, X.-B.; Tan, W. Angew. Chem., Int. Ed. 2021, 60, 800.
[57]
Ong, M. J. H.; Debieu, S.; Moreau, M.; Romieu, A. Richard J. Chem. Asian J. 2017, 12, 936.
[58]
Wang, S.; Li, B.; Zhang, F. ACS Cent. Sci. 2020, 6, 1302.
[59]
Hara, D.; Uno, S.; Motoki, T.; Kazuta, Y.; Norimine, Y.; Suganuma, M.; Fujiyama, S.; Shimaoka, Y.; Yamashita, K.; Okada, M.; Nishikawa, Y.; Amino, H.; Iwanaga, S. J. Phys. Chem. B 2021, 125, 8703.
[60]
Li, N.; Wang, T.; Wang, N.; Fan, M.; Cui, X. Angew. Chem., Int. Ed. 2022, e202217326.
文章导航

/