研究论文

碘介导下通过氧化性C—C键形成合成β-硝基胺与α-胺基腈类化合物

  • 李倩敏 ,
  • 王漫漫 ,
  • 于文全 ,
  • 常俊标
展开
  • a 郑州大学化学学院 绿色催化中心 郑州 450001
    b 郑州大学化工学院 绿色催化中心 郑州 450001
†共同第一作者

收稿日期: 2023-05-15

  修回日期: 2023-06-23

  网络出版日期: 2023-07-06

基金资助

河南省疫情防控应急科研攻关(221111311400); 河南省高等学校青年骨干教师培养计划(2021GGJS012); 国家自然科学基金(82130103)

Synthesis of β-Nitroamines and α-Aminonitriles by I2-Mediated Oxidative C—C Bond Formation

  • Qianmin Li ,
  • Manman Wang ,
  • Wenquan Yu ,
  • Junbiao Chang
Expand
  • a Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001
    b School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001
†These authors contributed equally to this work.

Received date: 2023-05-15

  Revised date: 2023-06-23

  Online published: 2023-07-06

Supported by

Henan Province Epidemic Prevention and Control Emergency Research Project(221111311400); Young Backbone Teachers Fund of Henan Province(2021GGJS012); National Natural Science Foundation of China(82130103)

摘要

以分子碘为单一氧化剂, 开发了一种无过渡金属催化的C—C键形成反应. 该反应可通过易得的叔胺分别与硝基烷、三甲基氰硅烷和亚磷酸酯合成β-硝基胺、α-胺基腈和α-胺基膦酸酯类化合物. 该合成方法具有操作简单, 底物适用范围广, 而且可以成功实现克级规模的合成.

本文引用格式

李倩敏 , 王漫漫 , 于文全 , 常俊标 . 碘介导下通过氧化性C—C键形成合成β-硝基胺与α-胺基腈类化合物[J]. 有机化学, 2023 , 43(11) : 3966 -3976 . DOI: 10.6023/cjoc202305021

Abstract

A transition-metal-free C—C bond formation reaction is developed employing molecular iodine as the sole oxidant to access β-nitroamines, α-aminonitriles and α-aminophosphonates from readily accessible tertiary amines with nitroalkanes, trimethylsilyl cyanide and phosphite, respectively. The present synthetic approach is operationally simple, has a broad substrate scope, and can be successfully conducted on a gram scale.

参考文献

[1]
(a) Tan, J.-P.; Li, X.; Chen, Y.; Rong, X.; Zhu, L.; Jiang, C.; Xiao, K.; Wang, T. Sci. China Chem. 2020, 63, 1091.
[1]
(b) El Sayed, M. T.; Sarhan, A. E.; Ahmed, E.; Khattab, R. R.; Elnaggar, M.; El-Messery, S. M.; Shaldam, M. A.; Hassan, G. S. ChemistrySelect 2020, 5, 3445.
[2]
(a) Méndez-álvarez, E.; Soto-Otero, R.; Sánchez-Sellero, I.; Lamas, M. L.-R. Life Sci. 1997, 60, 1719.
[2]
(b) Deng, X.; Lin, F.; Zhang, Y.; Li, Y.; Zhou, L.; Lou, B.; Li, Y.; Dong, J.; Ding, T.; Jiang, X.; Wang, R.; Ye, D. Eur. J. Med. Chem. 2014, 73, 1.
[2]
(c) Yang, R.; Ruan, Q.; Zhang, B.-Y.; Zheng, Z.-L.; Miao, F.; Zhou, L.; Geng, H.-L. Molecules 2014, 19, 8051.
[2]
(d) Cao, F.-J.; Xu, M.-X.; Zhou, B.-H.; Du, Y.-S.; Yao, J.-H.; Zhou, L. Toxicol. In Vitro 2019, 54, 295.
[2]
(e) Gajic, M.; Ilic, B. S.; Bondzic, B. P.; Dzambaski, Z.; Kojic, V. V.; Jakimov, D. S.; Kocic, G.; Smelcerovic, A. Chem. Biodiversity 2021, 18, e2100261.
[3]
Pabu??uoglu, V.; Arar, G.; G?zler, T.; Freyer, A. J.; Shamma, M. J. Nat. Prod. 1989, 52, 716.
[4]
Romo-Pérez, A.; Miranda, L. D.; Chávez-Blanco, A. D.; Due?as- González, A.; Camacho-Corona, M. d. R.; Acosta-Huerta, A.; García, A. Eur. J. Med. Chem. 2017, 138, 1.
[5]
Hayashi, K.; Minoda, K.; Nagaoka, Y.; Hayashi, T.; Uesato, S. Bioorg. Med. Chem. Lett. 2007, 17, 1562.
[6]
Cao, F.-J.; Yang, R.; Lv, C.; Ma, Q.; Lei, M.; Geng, H.-L.; Zhou, L. Eur. J. Pharm. Sci. 2015, 67, 45.
[7]
(a) Dyker, G. Angew. Chem. Int. Ed. 1997, 36, 1700.
[7]
(b) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017.
[7]
(c) Bernardi, L.; Bonini, B. F.; Capitó, E.; Dessole, G.; Comes-Franchini, M.; Fochi, M.; Ricci, A. J. Org. Chem. 2004, 69, 8168.
[7]
(d) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490.
[8]
(a) Tsang, A. S.-K.; Todd, M. H. Tetrahedron Lett. 2009, 50, 1199.
[8]
(b) Nobuta, T.; Fujiya, A.; Yamaguchi, T.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2013, 3, 10189.
[8]
(c) Liu, P.-Y.; Zhang, C.; Zhao, S.-C.; Yu, F.; Li, F.; He, Y.-P. J. Org. Chem. 2017, 82, 12786.
[8]
(d) Zhang, R.; Qin, Y.; Zhang, L.; Luo, S. J. Org. Chem. 2019, 84, 2542.
[9]
(a) Chu, L.; Qing, F.-L. Chem. Commun. 2010, 46, 6285.
[9]
(b) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 47, 2354.
[9]
(c) Kumar, R. A.; Saidulu, G.; Prasad, K. R.; Kumar, G. S.; Sridhar, B.; Reddy, K. R. Adv. Synth. Catal. 2012, 354, 2985.
[9]
(d) Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A. Org. Lett. 2013, 15, 574.
[9]
(e) Zhu, S.-L.; Ou, S.; Zhao, M.; Shen, H.; Wu, C.-D. Dalton Trans. 2015, 44, 2038.
[9]
(f) Liang, W.; Zhang, T.; Liu, Y.; Huang, Y.; Liu, Z.; Liu, Y.; Yang, B.; Zhou, X.; Zhang, J. ChemSusChem 2018, 11, 3586.
[10]
(a) Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.
[10]
(b) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 12709.
[10]
(c) Gandy, M. N.; Raston, C. L.; Stubbs, K. A. Chem. Commun. 2015, 51, 11041.
[10]
(d) Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2015, 51, 11256.
[10]
(e) Li, X.; Li, Y.; Huang, Y.; Zhang, T.; Liu, Y.; Yang, B.; He, C.; Zhou, X.; Zhang, J. Green Chem. 2017, 19, 2925.
[10]
(f) Chen, K.; Cheng, Y.; Chang, Y.; Li, E.; Xu, Q.-L.; Zhang, C.; Wen, X.; Sun, H. Tetrahedron 2018, 74, 483.
[10]
(g) Ide, T.; Shimizu, K.; Egami, H.; Hamashima, Y. Tetrahedron Lett. 2018, 59, 3258.
[10]
(h) Kosso, A. R. O.; Sellet, N.; Baralle, A.; Cormier, M.; Goddard, J.-P. Chem. Sci. 2021, 12, 6964.
[10]
(i) Lin, C.; Li, P.; Wang, L. Tetrahedron Lett. 2021, 73, 153102.
[11]
(a) Baslé, O.; Li, C.-J. Green Chem. 2007, 9, 1047.
[11]
(b) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
[11]
(c) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835.
[11]
(d) Meng, Q.-Y.; Liu, Q.; Zhong, J.-J.; Zhang, H.-H.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2012, 14, 5992.
[11]
(e) Brzozowski, M.; Forni, J. A.; Savage, G. P.; Polyzos, A. Chem. Commun. 2015, 51, 334.
[11]
(f) Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
[11]
(g) Wang, H.; Wang, A.; Xia, Z.; Zhou, W.; Sun, Z.; Qian, J.; He, M. Chin. J. Org. Chem. 2020, 40, 2099. (in Chinese)
[11]
(王慧, 王安玮, 夏珍珍, 周维友, 孙中华, 钱俊峰, 何明阳, 有机化学, 2020, 40, 2099.)
[11]
(h) Bjerg, E. E.; Marchan-Garcia, J.; Buxaderas, E.; Moglie, Y.; Radivoy, G. J. Org. Chem. 2022, 87, 13480.
[12]
Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Org. Lett. 2014, 16, 2346.
[13]
Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.
[14]
(a) Liu, J.; Wei, W.; Zhao, T.; Liu, X.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9326.
[14]
(b) Lv, Z.; Wang, B.; Hu, Z.; Zhou, Y.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9924.
[15]
(a) Yi, X.; Zhao, Z.; Wang, M.; Yu, W.; Chang, J. Org. Lett. 2022, 24, 8703.
[15]
(b) Wang, M.; Ye, W.; Sun, N.; Yu, W.; Chang, J. J. Org. Chem. 2023, 88, 1061.
[16]
(a) Jayram, J.; Xulu, B. A.; Jeena, V. Tetrahedron 2019, 75, 130617.
[16]
(b) Huang, H.-Y.; Wu, H.-R.; Wei, F.; Wang, D.; Liu, L. Org. Lett. 2015, 17, 3702.
[16]
(c) Gromada, J.; Matyjaszewski, K. Macromolecules 2001, 34, 7664.
[16]
(d) Wan, J.-P.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 440.
[17]
Tran, V. H.; La, M. T.; Kim, H.-K. Tetrahedron Lett. 2019, 60, 1860.
[18]
Yan, C.; Liu, Y.; Wang, Q. RSC Adv. 2014, 4, 60075.
[19]
Zhang, L.; Peng, C.; Zhao, D.; Wang, Y.; Fu, H.-J.; Shen, Q.; Li, J.-X. Chem. Commun. 2012, 48, 5928.
[20]
Huang, B.-Q.; Chen, Y.; Zhang, X.-J.; Yan, M. Eur. J. Org. Chem. 2021, 3015.
[21]
Tian, H.; Xu, W.; Liu, Y.; Wang, Q. Chem. Commun. 2019, 55, 14813.
[22]
Qian, W.; Zhou, X. Chinese J. Org. Chem. 2013, 33, 2430.
[23]
Tran, V. H.; La, M. T.; Kang, S.; Kim, H.-K. Org. Biomol. Chem. 2020, 18, 5008.
[24]
Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2012, 124, 3702.
[25]
Zhou, J.; Li, L.; Wang, S.; Yan, M.; Wei, W. Green Chem. 2020, 22, 3421.
[26]
Tsang, A. S.-K.; Hashmi, A. S. K.; Comba, P.; Kerscher, M.; Chan, B.; Todd, M. H. Chem.-Eur. J. 2017, 23, 9313.
[27]
Kim, H.-K.; Lee, A. Tetrahedron Lett. 2016, 57, 4890.
[28]
Casarini, D.; Davalli, S.; Lunazzi, L. J. Org. Chem. 1989, 54, 4616.
[29]
Shu, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2009, 74, 7464.
[30]
Zhu, S.-S.; Liu, Y.; Chen, X.-L.; Qu, L.-B.; Yu, B. ACS Catal. 2022, 12, 126.
[31]
Yu, J.; Wang, Z.; Zhang, Y.; Su, W. Tetrahedron 2015, 71, 6116.
[32]
Zhang, G.; Ma, Y.; Cheng, G.; Liu, D.; Wang, R. Org. Lett. 2014, 16, 656.
[33]
Wang, J.-H.; Li, X.-B.; Li, J.; Lei, T.; Wu, H.-L.; Nan, X.-L.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2019, 55, 10376.
[34]
Liu, L.; Wang, Z.; Fu, X.; Yan, C.-H. Org. Lett. 2012, 14, 5692.
[35]
Xia, Q.; Zhang, W.; Li, Y.; Cheng, L.; Liang, X.; Dai, P. CN 112390696B, 2021.
[36]
Mudithanapelli, C.; Dhorma, L. P.; Kim, M.-H. Org. Lett. 2019, 21, 3098.
文章导航

/