基于原位形成的氮杂邻亚甲基苯醌和卤代萘酚的分子间[4+1]螺环化/去芳香化反应
收稿日期: 2023-03-20
修回日期: 2023-06-16
网络出版日期: 2023-07-13
基金资助
国家自然科学基金(22001246); 国家自然科学基金(22271070)
Dearomatization of Halonaphthols via an Intermolecular [4+1] Spiroannulation with in situ Formed Aza-ortho-quinone Methides
Received date: 2023-03-20
Revised date: 2023-06-16
Online published: 2023-07-13
Supported by
National Natural Science Foundation of China(22001246); National Natural Science Foundation of China(22271070)
报道了一种碱促进的卤代萘酚与N-(邻氯甲基)芳基酰胺[4+1]螺环化/去芳构化策略, 以此来直接有效地合成氮杂螺环化合物. 在温和条件下以中等至优秀的收率、高非对映选择性地合成了一系列氮杂螺环化合物. 该反应可以兼容各种官能团, 如醛基、游离羟基和不同的N保护基, 如Bz和Ts等. 对产物进行了转化, 并提出了可能的反应机理.
关键词: 氮杂螺环; [4+1]环加成反应; 脱芳构化; 螺环化
梁俊秀 , 刘亚洲 , 王阿木 , 吴彦超 , 马小锋 , 李惠静 . 基于原位形成的氮杂邻亚甲基苯醌和卤代萘酚的分子间[4+1]螺环化/去芳香化反应[J]. 有机化学, 2023 , 43(11) : 3888 -3899 . DOI: 10.6023/cjoc202303029
A base promoted dearomatization strategy for [4+1] spiroannulation of halonaphthols with N-(o-chloromethyl) aryl amides is reported, which is used to efficiently synthesize azaspirocycles. A range of azaspirocycles were obtained in satisfactory to excellent yield with high diastereoselectivity under mild conditions. Variety functional groups including aldehyde and free hydroxyl group, and different N-protecting groups, such as Bz and Ts are compatibility. The transformation of the product and a possible mechanism were also provided.
| [1] | (a) Zhao, Y.; Xia, W. Chem. Soc. Rev. 2018, 47, 2591. |
| [1] | (b) Ju, M.; Schomaker, J. M. Nat. Rev. Chem. 2021, 5, 580. |
| [2] | (a) Powell, R. G.; Weisleder, D.; Smith, C. R. J. Pharm. Sci. 1972, 61, 1227. |
| [2] | (b) Iizuka, H.; Irie, H.; Masaki, N.; Osaki, K.; Uyeo, S. J. Chem. Soc., Chem. Commun. 1973, 125. |
| [2] | (c) Inubushi, Y.; Ishii, H.; Yasui, B.; Hashimoto, M.; Harayama, T. Chem. Pharm. Bull. 1968, 16, 82. |
| [2] | (d) Zhang, Y.; Tice, C. M.; Singe, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673. |
| [3] | (a) Dou, Q.; Tu, Y.; Zhang, Y.; Tian, J.; Zhang, F.; Wang, S. Adv. Synth. Catal. 2016, 358, 874. |
| [3] | (b) Chen, S.; Ma, W.; Yan, Z.; Zhang, F.; Wang, S.; Tu, Y.; Zhang, X.; Tian, J. J. Am. Chem. Soc. 2018, 140, 10099. |
| [3] | (c) Yuan, Y.; Han, X.; Zhu, F.; Tian, J.; Zhang, F.; Zhang, X.; Tu, Y.; Wang, S.; Guo, X. Nat. Commun. 2019, 10, 3394. |
| [3] | (d) Jing, Z.; Liang, D.; Tian, J.; Zhang, F.; Tu, Y. Org. Lett. 2021, 23, 1258. |
| [4] | (a) Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673. |
| [4] | (b) Hiesinger, K.; Dar'in, D.; Proschak, E.; Krasavin, M. J. Med. Chem. 2021, 64, 150. |
| [4] | (c) Yanagimoto, A.; Uwabe, Y.; Wu, Q.; Muto, K.; Yamaguchi, J. ACS Catal. 2021, 11, 10429. |
| [5] | (a) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. |
| [5] | (b) Zheng, C.; You, S. Chem 2016, 1, 830. |
| [5] | (c) Adams, K.; Ball, A. K.; Sweeney, J. B. Nat. Chem. 2017, 9, 396. |
| [5] | (d) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Chem. Soc. Rev. 2018, 47, 7996. |
| [5] | (e) Wang, Y.; Bode, J. W. J. Am. Chem. Soc. 2019, 141, 9739. |
| [5] | (f) Saito, F.; Trapp, N.; Bode, J. W. J. Am. Chem. Soc. 2019, 141, 5544. |
| [5] | (g) Flodén, N. J.; Trowbridge, A.; Willcox, D.; Walton, S. M.; Kim, Y.; Gaunt, M. J. J. Am. Chem. Soc. 2019, 141, 8426. |
| [5] | (h) Shennan, B. D. A.; Smith, P. W.; Ogura, Y.; Dixon, D. J. Chem. Sci. 2020, 11, 10354. |
| [5] | (i) Xia, Z.-L.; Xu-Xu, Q.-F.; Zheng, C.; You, S.-L. Chem. Soc. Rev. 2020, 49, 286. |
| [5] | (j) Yang, W.; Zhang, M.; Feng, J. Adv. Synth. Catal. 2020, 362, 4446. |
| [5] | (k) Zhang, C.; Bu, F.; Zeng, C.; Wang, D.; Lu, L.; Zhang, H.; Lei, A. CCS Chem. 2022, 4, 1199. |
| [6] | (a) Zhuo, C.; Zhang, W.; You, S. L. Angew. Chem., Int. Ed. 2012, 51, 12662. |
| [6] | (b) Zhuo, C.; Liu, W.; Wu, Q.; You, S. L. Chem. Sci. 2012, 3, 205. |
| [6] | (c) Zhuo, C.; Cheng, Q.; Liu, W.; Zhao, Q.; You, S. L. Angew. Chem., Int. Ed. 2015, 54, 8475. |
| [6] | (d) Chen, J. B.; Jia, Y. X. Org. Biomol. Chem. 2017, 15, 3550. |
| [6] | (e) Li, X.; Zhou, B.; Yang, R.; Yang, M.; Liang, X.; Liu, R.; Jia, Y, X. J. Am. Chem. Soc. 2018, 140, 13945. |
| [6] | (f) Liang, R. X.; Xu, D. Y.; Yang, F. M.; Jia, Y. X. Chem. Commun. 2019, 55, 7711. |
| [7] | (a) Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 3759. |
| [7] | (b) Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Chem. Commun. 2007, 1224. |
| [7] | (c) Dohi, T.; Takenaga, N.; Fukushima, K.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Chem. Commun. 2010, 46, 7697. |
| [7] | (d) Palmer, L. I.; Read de Alaniz, J. Angew. Chem., Int. Ed. 2011, 50, 7167. |
| [7] | (e) Xu, Z.; Xing, P.; Jiang, B. Org. Lett. 2017, 19, 1028. |
| [7] | (f) Tang, W.; Cao, K.; Meng, S.; Zheng, W. Synthesis 2017, 49, 3670. |
| [7] | (g) Singh, F. V.; Kole, P. B.; Mangaonkar, S. R.; Shetgaonkar, S. E. Beilstein J. Org. Chem. 2018, 14, 1778. |
| [8] | (a) Zhang, Z.; Song, X.; Zhang, G.; Liu, L. Chin. Chem. Lett. 2021, 32, 1423. |
| [8] | (b) Zhang, Z.; Cao, X.; Zhang, G.; Liu, L. Chin. Chem. Lett. 2023, 34, 107779. |
| [9] | (a) Kusama, H.; Uchiyama, K.; Yamashita, Y.; Narasaka, K. Chem. Lett. 1995, 24, 715. |
| [9] | (b) Tanaka, K.; Mori, Y.; Narasaka, K. Chem. Lett. 2004, 33, 26. |
| [9] | (c) Ma, X., Farndon, J. J.; Young, T. A.; Fey, N.; Bower, J. F. Angew. Chem., Int. Ed. 2017, 56, 14531. |
| [9] | (d) Farndon, J. J.; Ma, X.; Bower, J. F. J. Am. Chem. Soc. 2017, 139, 14005. |
| [9] | (e) Zhang, C.; Bu, F.; Zeng, C.; Wang, D.; Lu, L.; Zhang, H.; Lei, A. CCS Chem. 2022, 4, 1199. |
| [10] | Ge, Y.; Qin, C.; Bai, L.; Hao, J.; Liu, J.; Luan, X. Angew. Chem., Int. Ed. 2020, 59, 18985. |
| [11] | (a) Yang, B. C.; Gao, S. H. Chem. Soc. Rev. 2018, 47, 7926. |
| [11] | (b) Happy, S.; Junaid, M.; Yadagiri, D. Chem. Commun. 2023, 59, 29. |
| [11] | (c) Hsiao, C. C.; Liao, H. H.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13258. |
| [11] | (d) Gebauer, K.; F. Reu?, F.; Spanka, M.; Schneider, C. Org. Lett. 2017, 19, 4588. |
| [11] | (e) Zhang, X.; Pan, Y.; Liang, P.; Ma, X.; Jiao, W.; Shao, H. W. Adv. Synth. Catal. 2019, 361, 5552. |
| [11] | (f) Zhou, F.; Cheng, Y.; Liu, X. P.; Chen, J. R.; Xiao, W. J. Chem. Commun. 2019, 55, 3117. |
| [12] | (a) Jian, Y.; Liang, P.; Li, X.; Shao, H.; Ma, X. Org. Biomol. Chem. 2023, 21, 179. |
| [12] | (b) Liang, P.; Zhao, H.; Zhou, T.; Zeng, K.; Jiao, W.; Pan, Y.; Liu, Y.; Fang, D.; Ma, X.; Shao, H. Adv. Synth. Catal. 2021, 363, 3532. |
| [12] | (c) Wang, A.; Liu, Y.-Z.; Shen, Z.; Qiao, Z.; Ma, X. Org. Lett. 2022, 24, 1454. |
| [12] | (d) Ma, X.; Liu, Y.; Du, L.; Zhou, J.; Markó, I. E. Nat. Commun. 2020, 11, 914. |
| [13] | During our preparation of this manuscript, a similar process was disclosed in a patent, in which 2.5 equiv. of 1 and 4.0 equiv. of Na2CO3 were employed in toxic CH3NO2 to maintain high yield with limited functional group tolerance, see: Zhang, J; He, Z; Cheng, X. CN 114835630, 2022. |
| [14] | (a) Lei, L.; Liang, Y.-F.; Liang, C.; Qin, J.-K.; Pan, C.-X.; Su, G.-F.; Mo, D.-L. Org. Biomol. Chem. 2021, 19, 3379. |
| [14] | (b) Lu, D.-L.; Yao, Y.-Y.; Liang, Y.-F.; Liang, C.; Lei, L.; Ma, L.; Mo, D.-L. J. Org. Chem. 2023, 88, 690. |
| [15] | Bram, G.; Loupy, A.; Sansoulet, J.; Vaziri, Z. F. Tetrahedron Lett. 1984, 25, 5035. |
| [16] | (a) Izzo, I.; Scioscia, M.; Gaudio, P. D.; Riccardis, F. D. Tetrahedron Lett. 2001, 42, 5421. |
| [16] | (b) Song, X.; Song, A.; Zhang, F.; Li, H.; Wang, W. Nat. Commun. 2011, 2, 524. |
| [16] | (c) Wang, L.; Yang, D.; Li, D.; Wang, P.; Wang, K.; Wang, J.; Jiang, X.; Wang, R. Chem.-Eur. J. 2016, 22, 8483. |
| [16] | (d) Zhou, B.; Yuan, Z.; Yu, J.; Luan, X. Org. Lett. 2022, 24, 837. |
| [17] | Rossi, R. A.; Pierini, A. B.; Penenory, A. B. Chem. Rev. 2003, 103, 71. |
| [18] | Boal, B. W.; Schammel, A. W.; Garg, N. K. Org. Lett. 2009, 11, 3458. |
| [19] | Chen, L.; Yang, G. M.; Wang, J.; Jia, Q. F.; Wei, J.; Du, Z. Y. RSC Adv. 2015, 5, 76696. |
| [20] | Jiang, F.; Wu, Z.; Zhang, W. Tetrahedron Lett. 2010, 51, 5124. |
| [21] | Kumar, P.; Shirke, R. P.; Yadav, S.; Ramasastry, S. S. V. Org. Lett. 2021, 23, 4909. |
| [22] | Lee, E.; Hwang, Y.; Kim, Y. B.; Kim, D.; Chang, S. J. Am. Chem. Soc. 2021, 143, 6363. |
/
| 〈 |
|
〉 |