手性磷酸催化α-全碳季碳醛的不对称烯丙基化动力学拆分
收稿日期: 2023-04-11
修回日期: 2023-06-22
网络出版日期: 2023-07-13
基金资助
国家自然科学基金(21772151); 国家自然科学基金(22072111)
Kinetic Resolution of Aldehydes Bearing an All-Carbon Quaternary Stereocenter at the α-Position by the Antilla Allylboration
Received date: 2023-04-11
Revised date: 2023-06-22
Online published: 2023-07-13
Supported by
National Natural Science Foundation of China(21772151); National Natural Science Foundation of China(22072111)
陈宇亮 , 贺凤开 , 王思云 , 贾鼎成 , 刘亚群 , 黄毅勇 . 手性磷酸催化α-全碳季碳醛的不对称烯丙基化动力学拆分[J]. 有机化学, 2023 , 43(12) : 4294 -4302 . DOI: 10.6023/cjoc202304015
Acyclic aldehydes containing a chiral all-carbon quaternary center at the α-position are important synthons for pharmaceuticals and natural products. The challenges such as steric congestion and conformational flexibility in acyclic systems must be overcome, which constitutes to be a hot and difficult topic in the field of asymmetric catalysis. Such type of structural motif is mainly accessed from the α-C—H functionalization of tertiary aldehydes via enamine catalysis or based on enolate chemistry. Desymmetric and tandem strategies have also been applied for the synthetic task. The discovery of novel synthetic methods is still highly demanding, especially in an organocatalysis manner. Binaphthol (BINOL)-derived chiral phosphoric acids have been demonstrated as efficient bifunctional catalysts in a wide range of organic reactions including the asymmetric allylboration of aldehydes (Antilla allylboration). We envisaged that if racemic α-all-carbon quaternary aldehydes were applied, kinetic resolution of aldehydes through the Antilla allylboration would provide chiral aldehydes and homoallylic alcohols containing an all-carbon quaternary center. The idea was eventually realized by employing 10 mol% (R)-3,3'-bis- (2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diylhydrogenphosphate (TRIP) in toluene at –70 ℃. 15 examples of racemic aldehydes bearing electron-rich, electron-neutral and electron-deficient substituents at the phenyl ring, as well as 2-naphthyl group were screened, affording moderate kinetic resolution performance (with an s-factor up to 37.0). The ee values of chiral aldehydes and homoallylic products reached up to 97% and 81%, respectively. This method provides a new route for the synthesis of chiral molecules bearing an all-carbon quaternary stereocenter.
| [1] | (a) Long R.; Huang J.; Gong J.; Yang Z. Nat. Prod. Rep. 2015, 32, 1584. |
| [1] | (b) Zeng X.-P.; Cao Z.-Y.; Wang Y.-H.; Zhou F.; Zhou J. Chem. Rev. 2016, 116, 7330. |
| [1] | (c) Das J. P.; Marek I. Chem. Commun. 2011, 47, 4593. |
| [1] | (c) Qi H.-B.; Han K.-M.; Chen S.-F. Chin. J. Chem. 2021, 39, 2699. |
| [1] | (d) He X.-L.; Ye K.-Y.; Chin. J. Org. Chem. 2022, 42, 3434. (in Chinese) |
| [1] | (何星磊, 叶克印, 有机化学, 2022, 42, 3434.) |
| [2] | (a) Jung M. E.; D'Amico D. C. J. Am. Chem. Soc. 1995, 117, 7379. |
| [2] | (b) Bando T.; Shishido K. Chem. Commun. 1996, 1357. |
| [2] | (c) Corey E. J.; Guzman-Perez A. Angew. Chem., Int. Ed. 1998, 37, 388. |
| [3] | Trost B. M.; Hung C.-I. J.; Jiao Z.-W. J. Am. Chem. Soc. 2019, 141, 16085. |
| [4] | Vital P.; Tanner D. Org. Biomol. Chem. 2006, 4, 4292. |
| [5] | Kita Y.; Furukawa A.; Futamura J.; Ueda K.; Sawama Y.; Hamamoto H.; Fujioka H. J. Org. Chem. 2001, 66, 8779. |
| [6] | Wilson M. S.; Woo J. C. S.; Dake G. R. J. Org. Chem. 2006, 71, 4237. |
| [7] | Sonawane R. P.; Jheengut V.; Rabalakos C.; Larouche-Gauthier R.; Scott H. K.; Aggarwal V. K. Angew. Chem., Int. Ed. 2011, 50, 3760. |
| [8] | Lee M.; Kim D. H. Bioorg. Med. Chem. 2002, 10, 913. |
| [9] | (a) Mase N.; Tanaka F.; Barbas III C. F. Angew. Chem., Int. Ed. 2004, 43, 2420. |
| [9] | (b) Mukherjee S.; List B. J. Am. Chem. Soc. 2007, 129, 11336. |
| [9] | (c) Brown A. R.; Kuo W.-H.; Jacobsen E. N. J. Am. Chem. Soc. 2010, 132, 9286. |
| [9] | (d) Krautwald S.; Sarlah D.; Schafroth M. A.; Carreira E. M. Science 2013, 340, 1065. |
| [9] | (e) List B.; ?ori? I.; Grygorenko O. O.; Kaib P. S. J.; Komarov I.; Lee A.; Leutzsch M.; Pan S. C.; Tymtsunik A. V.; van Gemmeren M. Angew. Chem., Int. Ed. 2014, 53, 282. |
| [9] | (f) Zhou H.; Wang Y.-N.; Zhang L.; Cai M.; Luo S.-Z. J. Am. Chem. Soc. 2017, 139, 3631. |
| [9] | (g) Cruz F. A.; Dong V. M. J. Am. Chem. Soc. 2017, 139, 1029. |
| [10] | (a) Mo X.-B.; Hall D. G. J. Am. Chem. Soc. 2016, 138, 10762. |
| [10] | (b) Wright T. B.; Evans P. A. J. Am. Chem. Soc. 2016, 138, 15303. |
| [10] | (c) Trost B. M.; Hung C.-I.; Saget T.; Gnanamani E. Nat. Catal. 2018, 1, 523. |
| [10] | (d) Trost B. M.; Zuo Z.-J.; Wang Y.-L.; Schultz J. E. ACS Catal. 2020, 10, 9496. |
| [10] | (e) Zhang W.-Q.; Shen H.-C. ACS Catal. 2021, 11, 11849. |
| [10] | (f) Pan Z.-J.; Li W.-B.; Zhu S.; Liu F.; Wu H.-H.; Zhang J.-L. Angew. Chem., Int. Ed. 2021, 60, 18542. |
| [11] | Meng J.; Fan L.-F.; Han Z.-Y.; Gong L.-Z. Chem 2018, 4, 1047. |
| [12] | Xu P.-W.; Liu S.-H.; Huang Z.-X. J. Am. Chem. Soc. 2022, 144, 6918. |
| [13] | Gao L.; Kang B. C.; Ryu D. H. J. Am. Chem. Soc. 2013, 135, 14556. |
| [14] | Xu J.; Song Y.; Yang J.; Yang B.; Su Z.; Lin L.; Feng X. Angew. Chem., Int. Ed. 2023, 62, e202217887. |
| [15] | Qiu Z.-W.; Long L.; Zhu Z.-Q.; Liu H.-F.; Pan H.-P.; Ma A.-J.; Peng J.-B.; Wang Y.-H.; Gao H.; Zhang X.-Z. ACS. Catal. 2022, 12, 13282. |
| [16] | Uraguchi D.; Terada M. J. Am. Chem. Soc. 2004, 126, 5356. |
| [17] | Akiyama T.; Itoh J.; Yokota K.; Fuchibe K. Angew. Chem., Int. Ed. 2004, 43, 1566. |
| [18] | (a) Xia Z.-L.; Xu-Xu Q.-F.; Zheng C.; You S.-L. Chem. Soc. Rev. 2020, 49, 286. |
| [18] | (b) Maji R.; Mallojjala S. C.; Wheeler S. E. Chem. Soc. Rev. 2018, 47, 1142. |
| [18] | (c) Parmar D.; Sugiono E.; Raja S.; Rueping M. Chem. Rev. 2014, 114, 9047. |
| [18] | (d) Woldegiorgis A. G.; Lin X.-F. Beilstein J. Org. Chem. 2021, 17, 2729. |
| [18] | (e) Corte X. D.; Marigorta E. M. D.; Palacios F.; Vicario J.; Maestro A. Org. Chem. Front. 2022, 9, 6331. |
| [18] | (f) Da B.-C.; Xiang S.-H.; Li S.-Y.; Tan B. Chin. J. Chem. 2021, 39, 1787. |
| [18] | (g) Shao Y.-D.; Cheng D.-J. ChemCatChem 2021, 13, 1271. |
| [18] | (h) Woldegiorgis A. G.; Suleman M.; Lin X.-F. Eur. J. Org. Chem. 2022, 2022, e202200624. |
| [19] | (a) Liu W.; Yang X. Asian J. Org. Chem. 2021, 10, 692. |
| [19] | (b) Petersen K. S. Asian J. Org. Chem. 2016, 5, 308. |
| [20] | (a) Zhu G.; Li Y.; Bao G.; Sun W.; Huang L.; Hong L.; Wang R. ACS Catal. 2018, 8, 1810. |
| [20] | (b) Yamanaka M.; Hoshino M.; Katoh T.; Mori K.; Akiyama T. Eur. J. Org. Chem. 2012, 4508. |
| [21] | Zhu G.-M.; Bao G.-J.; Li Y.-P.; Sun W.-S.; Li J.; Hong L.; Wang R. Angew. Chem., Int. Ed. 2017, 56, 5332. |
| [22] | Shimoda Y.; Yamamoto H. J. Am. Chem. Soc. 2017, 139, 6855. |
| [23] | (a) James B. R.; Young C. G. J. Organomet. Chem. 1985, 285, 321. |
| [23] | (b) Tanaka K.; Fu G. C. J. Am. Chem. Soc. 2002, 124, 10296. |
| [24] | Jain P.; Antilla J. C. J. Am. Chem. Soc. 2010, 132, 11884. |
| [25] | For reviews, see: (a) Barrio, P.; Rodríguez, E.; Fustero, S. Chem. Rec. 2016, 16, 2046. |
| [25] | (b) Sedgwick D. M.; Grayson M. N.; Fustero S.; Barrio P. Synthesis 2018, 50, 1935. |
| [25] | For selected examples see: |
| [25] | (c) Gao S.; Duan M.; Andreola L. R.; Yu P.; Wheeler S. E.; Houk K. N.; Chen M. Angew. Chem., Int. Ed. 2022, 61, e202208908. |
| [25] | (d) Gao S.; Duan M.; Liu J.; Yu P.; Houk K. N.; Chen M. Angew. Chem., Int. Ed. 2021, 60, 24096. |
| [25] | (e) Gao S.; Duan M.; Houk K. N.; Chen M. Angew. Chem., Int. Ed. 2020, 59, 10540. |
| [25] | (f) Gao S.; Duan M.; Shao Q.; Houk K. N.; Chen M. J. Am. Chem. Soc. 2020, 142, 18355. |
| [26] | (a) Huang Y.-Y.; Yang X.; Lv Z.-C.; Cai C.; Kai C.; Pei Y.; Feng Y. Angew. Chem., Int. Ed. 2015, 54, 7299. |
| [26] | (b) Yang X.; Pang S.; Cheng F.; Zhang Y.; Lin Y.-W.; Yuan Q.; Zhang F.-L.; Huang Y.-Y. J. Org. Chem. 2017, 82, 10388. |
| [26] | (c) Zhang Y.-L.; He B.-J.; Xie Y.-W.; Wang Y.-H.; Wang Y.-L.; Shen Y.-C.; Huang Y.-Y. Adv. Synth. Catal. 2019, 361, 3074. |
| [26] | (d) Zhang Y.-L.; Zhao Z.-N.; Li W.-L.; Li J.-J.; Kalita S. J.; Schneider U.; Huang Y.-Y. Chem. Commun. 2020, 56, 10030. |
| [27] | Lu Y.; Kriche M. J. Org. Lett. 2009, 11, 3108. |
| [28] | (a) Sullivan J. M. WO 2000007968, 2000. |
| [28] | (b) Coxon T. J.; Fernández M.; Barwick-Silk J.; McKay A. I.; Britton L. E.; Weller A. S.; Willis M. C. J. Am. Chem. Soc. 2017, 139, 10142. |
| [29] | (a) Klussmann M.; List B.; Ratjen L.; Hoffmann S.; Wakchaure V.; Goddard R. Synlett 2010, 2189. |
| [29] | (b) Kobayashi S.; Kusakabe K.; Komiyama S.; Ishitani H. J. Org. Chem. 1999, 64, 4220. |
/
| 〈 |
|
〉 |