可见光催化N-芳基乙醛酸亚胺脱羧烷基化合成非天然氨基酸衍生物
收稿日期: 2023-04-17
修回日期: 2023-06-16
网络出版日期: 2023-07-13
基金资助
国家自然科学基金(22078045); 国家自然科学基金(21176039)
Synthesis of Unnatural Amino Acid Derivatives by Visible- Light-Catalyzed Decarboxylative Alkylation of N-Aromatic Glyoxylimines
Received date: 2023-04-17
Revised date: 2023-06-16
Online published: 2023-07-13
Supported by
National Natural Science Foundation of China(22078045); National Natural Science Foundation of China(21176039)
王永玲 , 张铁欣 , 张栩铭 , 孙晗扬 , 冷津瑶 , 李亚明 . 可见光催化N-芳基乙醛酸亚胺脱羧烷基化合成非天然氨基酸衍生物[J]. 有机化学, 2023 , 43(12) : 4284 -4293 . DOI: 10.6023/cjoc202304020
A visible-light-mediated decarboxylative radical alkylation of glyoxylimines for preparing α-alkylated unnatural amino acid derivatives was developed. Various alkyl radicals generated by tetrachloro-N-hydroxyphthalimide (TCNHPI) active esters were added to imines in good yields under visible light irradiation. Iridium complex was selected as photocatalyst and also, Hantzsch ester (HE) as hydrogen transfer reagent was essential. Fluoboric acid (HBF4) significantly improved the yield. Mild reaction conditions showed wide substrate scopes. In addition, the straightforward and efficient one-pot procotol, involved a multicomponent reaction of ethyl glyoxalate, primary amine and TCNHPI active ester occurred smoothly. This scheme provides a new method for the synthesis of α-alkylated unnatural amino acid derivatives.
| [1] | (a) Kancherla R.; Muralirajan K.; Rueping M. Chem. Sci. 2022, 13, 8583. |
| [1] | (b) Taylor A. P.; Robinson R. P.; Fobian Y. M.; Blakemore D. C.; Jones L. H.; Fadeyi O. Org. Biomol. Chem. 2016, 14, 6611. |
| [2] | (a) Remond E.; Martin C.; Martinez J.; Cavelier F. Chem. Rev. 2016, 116, 11654. |
| [2] | (b) Shatskiy A.; Axelsson A.; Stepanova E. V.; Liu J. Q.; Temerdashev A. Z.; Kore B. P.; Blomkvist B.; Gardner J. M.; Diner P.; Karkas M. D. Chem. Sci. 2021, 12, 5430. |
| [2] | (c) Xiao H.; Chatterjee A.; Choi S. H.; Bajjuri K. M.; Sinha S. C.; Schultz P. G. Angew. Chem., Int. Ed. 2013, 52, 14080. |
| [2] | (d) Liu C. C.; Schultz P. G. Annu. Rev. Biochem. 2010, 79, 413. |
| [3] | (a) Xue H.; Guo M.; Wang C.; Shen Y.; Qi R.; Wu Y.; Xu Z.; Chang M. Org. Chem. Front. 2020, 7, 2426. |
| [3] | (b) San Segundo M.; Correa A. ChemSusChem 2018, 11, 3893. |
| [3] | (c) Wang W.; Lorion M. M.; Martinazzoli O.; Ackermann L. Angew. Chem., Int. Ed. 2018, 57, 10554. |
| [4] | (a) Hruby V. J. Nat. Rev. Drug Discovery 2002, 1, 847. |
| [4] | (b) Wang C.; Guo M.; Qi R.; Shang Q.; Liu Q.; Wang S.; Zhao L.; Wang R.; Xu Z. Angew. Chem., Int. Ed. 2018, 57, 15841. |
| [5] | Hari Babu M.; Sim J. Eur. J. Org. Chem. 2022, e202200859. |
| [6] | (a) Yu H.; Xu Y.; Dong R.; Fang Y. Adv. Synth. Catal. 2017, 359, 39. |
| [6] | (b) Peng H.; Yu J. T.; Jiang Y.; Yang H.; Cheng J. J. Org. Chem. 2014, 79, 9847. |
| [7] | Tian H.; Xu W.; Liu Y.; Wang Q. Org. Lett. 2020, 22, 5005. |
| [8] | Yang L.; Qiu Z.; Wu J.; Zhao J.; Shen T.; Huang X.; Liu Z. Q. Org. Lett. 2021, 23, 3207. |
| [9] | Wei X.-H.; Zhao L.-B.; Zhou H.-C. RSC Adv. 2017, 7, 16561. |
| [10] | (a) Prier C. K.; Rankic D. A.; MacMillan D. W. Chem. Rev. 2013, 113, 5322. |
| [10] | (b) Twilton J.; Le C.; Zhang P.; Shaw M. H.; Evans R. W.; MacMillan D. W. C. Nat. Rev. Chem. 2017, 1, 0052. |
| [11] | Wang C.; Lei Y.; Guo M.; Shang Q.; Liu H.; Xu Z.; Wang R. Org. Lett. 2017, 19, 6412. |
| [12] | Wang Y.; Xing Y.; Liu X.; Ji H.; Kai M.; Chen Z.; Yu J.; Zhao D.; Ren H.; Wang R. J. Med. Chem. 2012, 55, 6224. |
| [13] | (a) Wang G.-Z.; Fu M.-C.; Zhao B.; Shang R. Sci. China Chem. 2021, 64, 439. |
| [13] | (b) Wang J.; Su Y.; Quan Z.; Li J.; Yang J.; Yuan Y.; Huo C. Chem. Commun. 2021, 57, 1959. |
| [13] | (c) Wang C.; Qi R.; Xue H.; Shen Y.; Chang M.; Chen Y.; Wang R.; Xu Z. Angew. Chem., Int. Ed. 2020, 59, 7461. |
| [14] | (a) Garrido-Castro A. F.; Maestro M. C.; Alemán J. Catalysts 2020, 10, 562. |
| [14] | (b) Chen J. R.; Hu X. Q.; Lu L. Q.; Xiao W. J. Chem. Soc. Rev. 2016, 45, 2044. |
| [14] | (c) Xie J.; Jin H.; Hashmi A. S. K. Chem. Soc. Rev. 2017, 46, 5193. |
| [14] | (d) Zhang H. H.; Yu S. J. Org. Chem. 2017, 82, 9995. |
| [15] | (a) Yoshimi Y.; Kobayashi K.; Kamakura H.; Nishikawa K.; Haga Y.; Maeda K.; Morita T.; Itou T.; Okada Y.; Hatanaka M. Tetrahedron Lett. 2010, 51, 2332. |
| [15] | (b) Wu G.; Wang J.; Liu C.; Sun M.; Zhang L.; Ma Y.; Cheng R.; Ye J. Org. Chem. Front. 2019, 6, 2245. |
| [15] | (c) Ni S.; Garrido-Castro A. F.; Merchant R. R.; de Gruyter J. N.; Schmitt D. C.; Mousseau J. J.; Gallego G. M.; Yang S.; Collins M. R.; Qiao J. X.; Yeung K. S.; Langley D. R.; Poss M. A.; Scola P. M.; Qin T.; Baran P. S. Angew. Chem., Int. Ed. 2018, 57, 14560. |
| [15] | (d) Ji P.; Zhang Y.; Wei Y.; Huang H.; Hu W.; Mariano P. A.; Wang W. Org. Lett. 2019, 21, 3086. |
| [15] | (e) Wang J.; Shao Z.; Tan K.; Tang R.; Zhou Q.; Xu M.; Li Y. M.; Shen Y. J. Org. Chem. 2020, 85, 9944. |
| [15] | (f) Ni S.; Padial N. M.; Kingston C.; Vantourout J. C.; Schmitt D. C.; Edwards J. T.; Kruszyk M. M.; Merchant R. R.; Mykhailiuk P. K.; Sanchez B. B.; Yang S.; Perry M. A.; Gallego G. M.; Mousseau J. J.; Collins M. R.; Cherney R. J.; Lebed P. S.; Chen J. S.; Qin T.; Baran P. S. J. Am. Chem. Soc. 2019, 141, 6726. |
| [16] | Jia J.; Lefebvre Q.; Rueping M. Org. Chem. Front. 2020, 7, 602. |
| [17] | (a) Murarka S. Adv. Synth. Catal. 2018, 360, 1735. |
| [17] | (b) Zhang Y.; Ma D.; Zhang Z. Arab. J. Chem. 2022, 15, 103922. |
| [17] | (c) Bhardwaj M.; Grover P.; Rasool B.; Mukherjee D. Asian J. Org. Chem. 2022, 11, e202200442. |
| [17] | (d) Garrido-Castro A. F.; Choubane H.; Daaou M.; Maestro M. C.; Aleman J. Chem. Commun. 2017, 53, 7764. |
| [17] | (e) Liu L.; Pan N.; Sheng W.; Su L.; Liu L.; Dong J.; Zhou Y.; Yin S. F. Adv. Synth. Catal. 2019, 361, 4126. |
| [17] | (f) Fu M.-C.; Shang R.; Zhao B.; Wang B.; Fu Y. Science 2019, 363, 1429. |
| [17] | (g) Ma P.; Liu Y.; Chen L.; Zhao X.; Yang B.; Zhang J. Org. Chem. Front. 2021, 8, 2473. |
| [17] | (h) Gladkov A. A.; Levin V. V.; Dilman A. D. J. Org. Chem. 2023, 88, 1260. |
| [18] | Suresh Yedase G.; Venugopal S.; P A.; Reddy Yatham V. Asian J. Org. Chem. 2022, 11, e202200478. |
| [19] | Bhar S.; Ananthakrishnan R. Photochem. Photobiol. Sci. 2017, 16, 1290. |
| [20] | Guo W.; Ding H.; Gu C.; Liu Y.; Jiang X.; Su B.; Shao Y. J. Am. Chem. Soc. 2018, 140, 15904. |
| [21] | Patel N. R.; Kelly C. B.; Siegenfeld A. P.; Molander G. A. ACS Catal. 2017, 7, 1766. |
| [22] | (a) Chapman R.; Melodia D.; Qu J.-B.; Stenzel M. H. Polym. Chem. 2017, 8, 6636. |
| [22] | (b) Qin T.; Cornella J.; Li C.; Malins L. R.; Edwards J. T.; Kawamura S.; Maxwell B. D.; Eastgate M. D.; Baran P. S. Science 2016, 352, 801. |
/
| 〈 |
|
〉 |