综述与进展

不对称傅-克反应在构建手性3-取代吲哚中的研究进展

  • 刘甜甜 ,
  • 段新红
展开
  • 北京林业大学理学院 北京 100083

收稿日期: 2023-03-05

  修回日期: 2023-06-04

  网络出版日期: 2023-07-20

基金资助

北京林业大学“卓越实验师”培育专项基金(20210902)

Recent Progress in the Construction of Chiral 3-Substituted Indoles by Asymmetric Friedel-Crafts Reactions

  • Tiantian Liu ,
  • Xinhong Duan
Expand
  • College of Science, Beijing Forestry University, Beijing 100083

Received date: 2023-03-05

  Revised date: 2023-06-04

  Online published: 2023-07-20

Supported by

Excellent Laboratory Teacher Cultivation Program of Beijing Forestry University(20210902)

摘要

由于手性3-取代吲哚化合物是许多具有生物活性天然产物和药物分子的核心骨架, 其合成方法的研究就格外令人注目. 尤其是近二十年来, 利用手性金属配合物和有机小分子催化剂实现吲哚的C(3)位不对称傅-克烷基化反应已成为有机界广泛研究的热点. 按照促进不对称傅-克烷基化反应的手性催化剂进行分类, 就近年来其在3-取代吲哚化合物合成中的应用加以综述, 并对今后的发展方向进行了展望.

本文引用格式

刘甜甜 , 段新红 . 不对称傅-克反应在构建手性3-取代吲哚中的研究进展[J]. 有机化学, 2023 , 43(11) : 3695 -3712 . DOI: 10.6023/cjoc202303010

Abstract

Chiral C(3)-functionalized indoles have received much attention as strategic building blocks for the synthesis of many natural products and bioactive compounds. Particularly in the past twenty years, application of chiral metal complexes and small-molecule organocatalysts for the asymmetric Friedel-Crafts C(3)-alkylations of indoles has become a hot topic in the organic field. Applications of asymmetric Friedel-Crafts reactions in the synthesis of C(3)-substituted indoles are reviewed according to the catalysts that promoting reaction. Moreover, future perspectives are also presented.

参考文献

[1]
(a) Joucla, L.; Djakovitch, L. Adv. Synth. Catal. 2009, 351, 673.
[1]
(b) Roger, J.; Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010, 2, 20.
[1]
(c) Chen, S. P.; Liao, Y. F.; Zhao, F.; Qi, H. R.; Liu, S. W.; Deng, G.-J. Org. Lett. 2014, 16, 1618.
[1]
(d) Leitch, J. A.; Bhonoah, Y.; Frost, C. G. ACS Catal. 2017, 7, 5618.
[1]
(e) Chen, J.; Li, M.; Zhang, J. L.; Sun, W. B.; Jiang, Y. J. Org. Lett. 2020, 22, 3033.
[1]
(f) Xu, P.; Duan, X. H. New J. Chem. 2021, 45, 19425.
[2]
(a) Liu, J.-F.; Jiang, Z.-Y.; Wang, R.-R.; Zheng, Y.-T.; Chen, J.-J.; Zhang, X.-M.; Ma, Y.-B. Org. Lett. 2007, 9, 4127.
[2]
(b) Karadeolian, A.; Kerr, M. A. Angew. Chem., Int. Ed. 2010, 49, 1133.
[2]
(c) Zhang, X.; Mu, T.; Zhan, F.; Ma, L.; Liang, D. Angew. Chem., Int. Ed. 2011, 50, 6164.
[2]
(d) Wu, W.; Xiao, M.; Wang, J.; Li, Y.; Xie, Z. Org. Lett. 2012, 14, 1624.
[3]
(a) Furst, L.; Narayanam, J. M. R.; Stephensen, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 1.
[3]
(b) DeLorbe, J. E.; Jabri, S. Y.; Mennen, S. M.; Overman, L. E.; Zhang, F.-L. J. Am. Chem. Soc. 2011, 133, 6549.
[3]
(c) Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. 2011, 133, 20611.
[3]
(d) Song, J.; Guo, C.; Adele, A.; Yin, H.; Gong, L.-Z. Chem.-Eur. J. 2013, 19, 3319.
[4]
(a) Angelini, E.; Balsamini, C.; Bartoccini, F.; Lucarini, S.; Piersanti, G. J. Org. Chem. 2008, 73, 5654.
[4]
(b) Gao, Y.-H.; Yang, L.; Zhou, W.; Xu, L.-W.; Xia, C.-G. Appl. Organomet. Chem. 2009, 23, 114.
[4]
(c) Lai, Q. Y.; Liao, R. S.; Wu, S. Y.; Zhang, J. X.; Duan, X. H. New J. Chem. 2013, 37, 4069.
[4]
(d) Yao, S.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. J. Org. Chem. 2016, 81, 4226.
[5]
(a) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.
[5]
(b) Poulsen, T. B.; Jorgensen, K. A. Chem. Rev. 2008, 108, 2903.
[5]
(c) Sheng, Y.-F.; Zhang, A.-J.; Zheng, X.-J.; You, S.-L. Chin. J. Org. Chem. 2008, 28, 605. (in Chinese)
[5]
(盛益飞, 张安将, 郑晓建, 游书力, 有机化学, 2008, 28, 605.)
[5]
(d) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190.
[5]
(e) He, Z. R.; Huang, Y. Y.; Francis, V. Acta Chim. Sinica 2013, 71, 700. (in Chinese)
[5]
(何展荣, 黄毅勇, Verpoort, Francis, 化学学报, 2013, 71, 700.)
[6]
(a) Chen, Y. C.; Xie, Z. F. Chin. J. Org. Chem. 2012, 32, 462. (in Chinese)
[6]
(陈永诚, 解正峰, 有机化学, 2012, 32, 462.)
[6]
(b) Beletskaya, I. P.; Averin, A. D. Curr. Organocatal. 2016, 3, 60.
[7]
(a) Corey, E. J.; Imai, N.; Zhang, H. Y. J. Am. Chem. Soc. 1991, 113, 728.
[7]
(b) J?rgensen, K. A.; Johannsen, M.; Yao, S.; Audrain, H.; Thorhauge, J. Acc. Chem. Res. 1999, 32, 605.
[7]
(c) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325.
[7]
(d) Evans, D. A.; Downey, C. W.; Hubbs, J. L. J. Am. Chem. Soc. 2003, 125, 8706.
[7]
(e) Xu, X. F.; Hu, W.-H.; Doyle, M. P. Angew. Chem., Int. Ed. 2011, 50, 6392.
[7]
(f) Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 15233.
[7]
(g) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
[8]
Zhuang, W.; Gathergood, N.; Hazell, R. G.; J?rgensen, K. A. J. Org. Chem. 2001, 66, 1009.
[9]
Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; J?rgensen, K. A. Angew., Chem., Int. Ed. 2001, 40, 160.
[10]
Yin, B.; Wu, Y.; Ma, H.; Ma, X.; Fu, B.; Liu, J. Chin. J. Org. Chem. 2015, 35, 2119. (in Chinese)
[10]
(殷伯翰, 吴燕华, 麻红利, 马晓东, 傅滨, 刘吉平, 有机化学, 2015, 35, 2119.)
[11]
(a) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030.
[11]
(b) Zhou, J.; Ye, M.-C.; Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2004, 69, 1309.
[12]
Staleva, P.; Hernández, J. G.; Bolm, C. Chem.-Eur. J. 2019, 25, 9202.
[13]
Jia, Y.; Yang, W.; Du, D.-M. Org. Biomol. Chem. 2012, 10, 4739.
[14]
Jia, S.-J.; Du, D.-M. Tetrahedron: Asymmetry 2014, 25, 980.
[15]
Li, N.-K.; Kong, L.-P.; Qi, Z.-H.; Yin, S.-J.; Zhang, J.-Q.; Wu, B.; Wang, X.-W. Adv. Synth. Catal. 2016, 358, 3100.
[16]
Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003.
[17]
(a) Trost, B. M.; Yeh, V. S. C. Angew. Chem. 2002, 114, 889.
[17]
(b) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338.
[17]
(c) Trost, B. M.; Martínez-Sánchez, S. Synlett 2005, 627.
[17]
(d) Trost, B. M.; Weiss, A. H.; Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8.
[17]
(e) Trost, B. M.; Hitce, J. J. Am. Chem. Soc. 2009, 131, 4572.
[18]
Trost, B. M.; Müller, C. J Am. Chem. Soc. 2008, 130, 2438.
[19]
Wang, B.-L.; Li, N.-K.; Zhang, J.-X.; Liu, G.-G.; Liu, T.; Shen, Q.; Wang, X.-W. Org. Biomol. Chem. 2011, 9, 2614.
[20]
Hua, Y.-Z.; Chen, J.-W.; Yang, H.; Wang, M.-C. J. Org. Chem. 2018, 83, 1160.
[21]
(a) Li, Q. H.; Liu, X. H.; Wang, J.; Shen, K.; Feng, X. M. Tetrahedron Lett. 2006, 47, 4011.
[21]
(b) Zhang, X.; Chen, D. H.; Liu, X. H.; Feng, X. M. J. Org. Chem. 2007, 72, 5227.
[21]
(c) Qin, B.; Xiao, X.; Liu, X. H.; Huang, J. L.; Wen, Y. H.; Feng, X. M. J. Org. Chem. 2007, 72, 9323.
[21]
(d) Li, X.; Liu, X. H.; Fu, Y. Z.; Wang, L. J.; Zhou, L.; Feng, X. M. Chem.-Eur. J. 2008, 14, 4796.
[21]
(e) Shang, D. J.; Xin, J. G.; Liu, Y. L.; Zhou, X.; Liu, X. H.; Feng X. M. J. Org. Chem. 2008, 73, 630.
[22]
Liu, Y. L.; Shang, D. J.; Zhou, X.; Zhu, Y.; Lin, L. L.; Liu, X. H; Feng, X. M. Org. Lett. 2010, 12, 180.
[23]
Hui, Y. H.; Chen, W. L.; Wang, W. T.; Jiang, J.; Cai, Y. F.; Lin, L. L.; Liu, X. H.; Feng, X. M. Adv. Synth. Catal. 2010, 352, 3174.
[24]
(a) Li, Y.; Li, Z.; Li, X.; Chang, H.; Wei, W. Chin. J. Org. Chem. 2014, 34, 693. (in Chinese)
[24]
(李英俊, 李志鹏, 李兴, 常宏宏, 魏文珑, 有机化学, 2014, 34, 693.)
[24]
(b) Wang, L.; Li, T.; Perveen, S.; Zhang, S.; Wang, X.; Ouyang, Y.; Li, P. Angew. Chem., Int. Ed. 2022, 61, e202213943.
[25]
Lyle, M. P. A.; Draper, N. D.; Wilson, P. D. Org. Lett. 2005, 7, 901.
[26]
Grach, G.; Dinut, A.; Marque, S.; Marrot, J.; Gil, R.; Prim, D. Org. Biomol. Chem. 2011, 9, 497.
[27]
Li, Y. S.; Dong, M. Q.; Gao, N. X.; Cao, G. R.; Teng, D. W. Appl. Organomet. Chem. 2022, 36, e6635.
[28]
Liu, L.; Zhao, Q. Y.; Du, F. P.; Chen, H. L.; Qin, Z. H.; Fu, B. Tetrahedron: Asymmetry 2011, 22, 1874.
[29]
Brunel, J. M. Chem. Rev. 2005, 105, 857.
[30]
Ishii, A.; Soloshonok, V. A.; Mikami K. J. Org. Chem. 2000, 65, 1597.
[31]
Dong, H.-M.; Lu, H.-H.; Lu, L.-Q.; Chen, C.-B.; Xiao, W.-J. Adv. Synth. Catal. 2007, 349, 1597.
[32]
(a) Corey, E. J.; Barnes-Seeman, D.; Lee, T. W.; Goodman, S. N. Tetrahedron Lett. 1997, 38, 6513.
[32]
(b) Yuan, Y.; Wang, X.; Li, X.; Ding, K. J. Org. Chem. 2004, 69, 146.
[33]
Blay, G.; Fernández, I.; Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601.
[34]
Tsubogo, T.; Kano, Y.; Yamashita, Y.; Kobayashi, S. Chem.-Asian J. 2010, 5, 1974.
[35]
List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
[36]
Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
[37]
(a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289.
[37]
(b) Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062.
[37]
(c) Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L. Angew. Chem., Int. Ed. 2005, 44, 1758.
[37]
(d) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
[37]
(e) Akiyama, T. Chem. Rev. 2007, 107, 5744.
[37]
(f) Gao, Y.-J.; Yang, L.-H.; Song, S.-J.; Ma, J.-J.; Tang, R.-X.; Bian, R.-H.; Liu, H.-Y.; Wu, Q.-H.; Wang, C. Chin. J. Org. Chem. 2008, 28, 8. (in Chinese)
[37]
(高勇军, 杨丽华, 宋双居, 马晶军, 唐然肖, 边瑞环, 刘海燕, 吴秋华, 王春, 有机化学, 2008, 28, 8.)
[37]
(g) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem. 2009, 291, 395.
[37]
(h) Terada, M. Synthesis 2010, 1929.
[37]
(i) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
[37]
(j) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277.
[38]
Simón, L.; Goodman, J. M. J. Org. Chem. 2010, 75, 589.
[39]
Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2004, 126, 11804.
[40]
Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292.
[41]
Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. 2007, 129, 1484.
[42]
García-García, C.; Ortiz-Rojano, L.; Alvarez, S.; Alvarez, R.; Ribagorda, M.; Carreno, M. C. Org. Lett. 2016, 18, 2224.
[43]
(a) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008, 47, 4016.
[43]
(b) Takahashi, O.; Kohno, Y.; Nishio, M. Chem. Rev. 2010, 110, 6049.
[44]
Ma, J.; Kass, S. R. J. Org. Chem. 2019, 84, 11125.
[45]
Ibáňez, I.; Kaneko, M.; Kamei, Y.; Tsutsumi, R.; Yamanaka, M.; Akiyama, T. ACS Catal. 2019, 9, 6903.
[46]
(a) Su, Y.; Shi, F. Chin. J. Org. Chem. 2010, 30, 486. (in Chinese)
[46]
(苏亚军, 史福强, 有机化学, 2010, 30, 486.)
[46]
(b) Liu, H.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. Org. Lett. 2006, 8, 6023.
[46]
(c) Wu, H.; He, Y.-P.; Shi, F. Synthesis 2015, 47, 1990.
[47]
Kashikura, W.; Itoh, J.; Mori, K.; Akiyama, T. Chem.-Asian J. 2010, 5, 470.
[48]
Rueping, M.; Bootwicha, T.; Kambutong, S.; Sugiono, E. Chem.- Asian J. 2012, 7, 1195.
[49]
Rueping, M.; Raja, S.; Núňez, A. Adv. Synth. Catal. 2011, 353, 563.
[50]
Hatano, M.; Mochizuki, T.; Nishikawa, K.; Ishihara, K. ACS Catal. 2018, 8, 349.
[51]
(a) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem. Commun. 2002, 480.
[51]
(b) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581.
[51]
(c) Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2225.
[51]
(d) C?oric, I.; Mu?ller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370.
[51]
(e) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. J. Org. Chem. 2010, 75, 8677.
[51]
(f) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
[51]
(g) Zheng, J.; Cui, W.-J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.
[51]
(h) Li, S. Y.; Zhang, J.-W.; Li, X.-L.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2016, 138, 16561.
[52]
Li, Y.-P.; Li, Z.-Q.; Zhou, B.-Y.; Li, M.-L.; Xue, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2019, 9, 6522.
[53]
Deng, X.-F.; Wang, Y.-W.; Zhang, S.-Q.; Li, L.; Li, G.-X.; Zhao, G.; Tang, Z. Chem. Commun. 2020, 56, 2499.
[54]
Jacobsen, E. N.; Markd, I.; Mungall, W. S.; Schrcider, G.; Sharpless, K. B. J Am. Chem. Soc. 1988, 110, 1968.
[55]
(a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726.
[55]
(b) Ting, A.; Goss, J. M.; McDougal, N. T.; Schaus, S. E. Top Curr. Chem. 2010, 291, 145.
[56]
Zhang, Y.; Liu, X.; Lin, L.; Feng, X. M. Prog. Chem. 2018, 30, 491. (in Chinese)
[56]
(张宇, 刘小华, 林丽丽, 冯小明, 化学进展, 2018, 30, 491.)
[57]
T?r?k, B.; Abid, M.; London, G.; Esquibel, J.; T?r?k, M.; Mhadgut, S. C.; Yan, P.; Prakash, G. K. S. Angew. Chem., Int. Ed. 2005, 44, 3086.
[58]
Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. J Am. Chem. Soc. 2006, 128, 8156.
[59]
Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.; Melchiorre, P. Org. Lett. 2007, 9, 1403.
[60]
Deng, J.; Zhang, S.; Ding, P.; Jiang, H.; Wang, W.; Li, J. Adv. Synth. Catal. 2010, 352, 833.
[61]
Li, J.; Wei, Z.; Cao, J.; Liang, D.; Lin, Y.; Duan, H. J. Org. Chem. 2022, 87, 2532.
[62]
Dündar, E.; Tanyeli, C. Tetrahedron Lett. 2021, 73, 153.
[63]
Curran, D. P.; Kuo, L. H. J. Org. Chem. 1994, 59, 3259.
[64]
(a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
[64]
(b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
[64]
(c) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem., Int. Ed. 2005, 44, 4032.
[64]
(d) Taylor, M. S.; Jacobsen, E. N. Angew. Chem.,Int. Ed. 2006, 45, 1520.
[65]
Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. 2005, 117, 6734.
[66]
Marqués-López, E.; Alcaine, A.; Tejero, T.; Herrera, R. P. Eur. J. Org. Chem. 2011, 3700.
[67]
Roca-López, D.; Marqués-López, E.; Alcaine, A.; Merino, P.; Herrera, R. P. Org. Biomol. Chem. 2014, 12, 4503.
[68]
Fan, Y.; Kass, S. R. J. Org. Chem. 2017, 82, 13288.
[69]
(a) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.
[69]
(b) Min, C.; Han, X.; Liao, Z. Q.; Wu, X. F.; Zhou, H.-B.; Dong, C. Adv. Synth. Catal. 2011, 353, 2715.
[69]
(c) Albrecht, ?.; Dickmeiss, G.; Acosta, F. C.; Rodríguez-Escrich, C; Davis, R. L.; J?rgensen, K. A. J. Am. Chem. Soc. 2012, 134, 2543.
[69]
(d) Albrecht, ?.; Acosta, F. C.; Fraile, A.; Albrecht, A.; Christensen, J.; J?rgensen, K. A. Angew. Chem., Int. Ed. 2012, 51, 9088.
[69]
(e) Cornaggia, C.; Manoni, F.; Torrente, E.; Tallon, S.; Connon, S. J. Org. Lett. 2012, 14, 1850.
[70]
(a) Jiang, H.; Paix?o, M. W.; Monge, D.; J?rgensen, K. A. J. Am. Chem. Soc. 2010, 132, 2775.
[70]
(b) Alemán, J.; Parra, A.; Jiang, H.; J?rgensen, K. A. Chem.-Eur. J. 2011, 17, 6890.
[70]
(c) Grayson, M. N. J. Org. Chem. 2017, 82, 4396.
[71]
Zhuang, W.; Hazell, R. G.; J?rgensen, K. A. Org. Biomol. Chem. 2005, 3, 2566.
[72]
Qian, Y.; Ma, G. Y.; Lv, A. F.; Zhu, H.-L.; Zhao, J.; Rawal, V. H. Chem. Commun. 2010, 46, 3004.
[73]
Pei, C.-K.; Jiang, Y.; Wei, Y.; Shi, M. Angew. Chem., Int. Ed. 2012, 51, 11328.
[74]
Li, Y.; He, C. Q.; Gao, F.-X.; Li, Z.; Xue, X.-S.; Li, X.; Houk, K. N.; Cheng, J.-P. Org. Lett. 2017, 19, 1926.
[75]
(a) Johnston, R. C.; Cheong, P. H. Y. Org. Biomol. Chem. 2013, 11, 5057.
[75]
(b) Asari, A. H.; Lam, Y.; Tius, M. A.; Houk, K. N. J. Am. Chem. Soc. 2015, 137, 13191.
文章导航

/