研究论文

高选择和高灵敏检测溶液和气相中硫化氢的新型萘酰亚胺类开启型荧光探针

  • 周五 ,
  • 彭敏 ,
  • 梁庆祥 ,
  • 吴爱斌 ,
  • 舒文明 ,
  • 余维初
展开
  • a 长江大学化学与环境工程学院 湖北荆州 434023
    b 长江大学非常规油气协同创新中心 湖北荆州 434023
    c 油气田清洁生产与污染控制湖北省工程研究中心 湖北荆州 434023

收稿日期: 2023-05-04

  修回日期: 2023-06-25

  网络出版日期: 2023-07-20

基金资助

国家自然科学基金(52274029)

A Novel Turn-On Fluorescent Probe Based on Naphthalimide for Highly Selective and Sensitive Detection of Hydrogen Sulfide in Solution and Gas

  • Wu Zhou ,
  • Min Peng ,
  • Qingxiang Liang ,
  • Aibin Wu ,
  • Wenming Shu ,
  • Weichu Yu
Expand
  • a School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023
    b Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Jingzhou, Hubei 434023
    c Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, Hubei 434023

Received date: 2023-05-04

  Revised date: 2023-06-25

  Online published: 2023-07-20

Supported by

National Natural Science Foundation of China(52274029)

摘要

构建了一种用于硫化氢检测的新型萘酰亚胺类开启型荧光探针(NPHQ). 因硫化氢亲核效应促使NPHQ中萘醌结构离解, 导致探针分子中的光诱导电子转移(PET)效应消失和萘酰亚胺分子内电荷转移(ICT)效应恢复, 而呈现出强烈的荧光开启效应. NPHQ荧光强度对0~0.5 μmol/L硫化氢呈线性增强, 检测限为1.68 nmol/L. NPHQ具备的高选择性、高灵敏度和荧光开启响应, 使其在溶液和气相中检测硫化氢, 具有较好的应用前景和价值.

本文引用格式

周五 , 彭敏 , 梁庆祥 , 吴爱斌 , 舒文明 , 余维初 . 高选择和高灵敏检测溶液和气相中硫化氢的新型萘酰亚胺类开启型荧光探针[J]. 有机化学, 2023 , 43(12) : 4277 -4283 . DOI: 10.6023/cjoc202305002

Abstract

A novel turn-on fluorescent probe (NPHQ) based on naphthalimide had been constructed to detect hydrogen sulfide. The nucleophilic effect of hydrogen sulfide induced the decomposition of naphthoquinone structure, which resulted in the disappearance of photo-induced electron transfer (PET) of NPHQ and recovery of intramolecular charge transfer (ICT) of naphthalimide. The fluorescence intensities of NPHQ showed a linear enhancement response to hydrogen sulfide in the concentration range of 0~0.5 μmol/L with limit of detection of 1.68 nmol/L. Moreover, NPHQ held promising application prospects for detecting hydrogen sulfide in solution and gas based on its high selectivity, sensitivity and specific turn-on emission.

参考文献

[1]
(a) Zhang X.; Bian J. S. ACS Chem. Neurosci. 2014, 5, 876.
[1]
(b) Chen C. Q.; Xin H.; Zhu Y. Z. Acta Pharmacol. Sin. 2007, 28, 1709.
[1]
(c) Panthi S.; Manandhar S.; Gautam K. Transl. Neurodegener. 2018, 7, 1.
[1]
(d) Li W.; Wang L.; Yin S.; Lai H.; Yuan L.; Zhang X. Chem. Sci. 2020, 11, 7991.
[2]
(a) Polhemus D. J.; Lefer D. J. Circ. Res. 2014, 114, 730.
[2]
(b) Yang M.; Fan J.; Du J.; Peng X. Chem. Sci. 2020, 11, 5127.
[3]
Wu L.; Wang R. Pharmacol. Rev. 2005, 57, 585.
[4]
Lamattina L.; Garcia-Mata C.; Graziano M.; Pagnussat G. Annu. Rev. Plant Biol. 2003, 54, 109.
[5]
(a) Cirino G.; Szabo C.; Papapetropoulos A. Physiol. Rev. 2023, 103, 31.
[5]
(b) Szabo C. Nat. Rev. Drug Discovery 2007, 6, 917.
[6]
Whiteman M.; Winyard P. G. Expert. Rev. Clin. Pharmacol. 2011, 4, 13.
[7]
Li Y.; Bai J.; Yang Y. H.; Hoshi N.; Chen D. B. Antioxidants 2020, 9. 1127.
[8]
Kimura H. Antioxid. Redox Signaling 2010, 12, 1111.
[9]
Hu X.; Chi Q.; Wang D.; Chi X.; Teng X.; Li S. Ecotoxicol. Environ. Saf. 2018, 164, 201.
[10]
Feliers D.; Lee H. J.; Kasinath B. S. Antioxid. Redox Signaling 2016, 25, 720.
[11]
Munaron L.; Avanzato D.; Moccia F.; Mancardi D. Cell Calcium. 2013, 53, 77.
[12]
Roorda M.; Miljkovic J. L.; van Goor H.; Henning R. H.; Bouma H. R. Redox Biol. 2021, 43, 101961.
[13]
(a) Elrod J. W.; Calvert J. W.; Morrison J.; Doeller J. E.; Kraus D. W.; Tao L.; Jiao X.; Scalia R.; Kiss L.; Szabo C.; Kimura H.; Chow C. W.; Lefer D. J. Proc. Natl. Acad. Sci. 2007, 104, 15560.
[13]
(b) Yang G.; Wu L.; Jiang B.; Yang W.; Qi J.; Cao K.; Meng Q.; Mustafa A. K.; Mu W.; Zhang S.; Snyder S. H.; Wang R. Science 2008, 322, 587.
[13]
(c) Linden D. R. Antioxid. Redox Signaling 2014, 20, 818.
[13]
(d) Olson K. R.; Donald J. A. Acta Histochem. 2009, 111, 244.
[13]
(e) Bhatia M.; Gaddam R. R. Antioxid. Redox Signaling 2021, 34, 1368.
[13]
(f) Dilek N.; Papapetropoulos A.; Toli-ver-Kinsky T.; Szabo C. Pharmacol. Res. 2020, 161, 105119.
[14]
Petruci J. F.; Fortes P. R.; Kokoric V.; Wilk A.; Raimundo I. M. Jr.; Cardoso A. A.; Mizaikoff B. Analyst 2014, 139, 198.
[15]
Choi M. G.; Cha S.; Lee H.; Jeon H. L.; Chang S. K. Chem. Commun. 2009, 47, 7390.
[16]
(a) Hammers M. D.; Taormina M. J.; Cerda M. M.; Montoya L. A.; Seidenkranz D. T.; Parthasarathy R.; Pluth M. D. J. Am. Chem. Soc. 2015, 137, 10216.
[16]
(b) Lv J.; Wang F.; Qiang J.; Ren X.; Chen Y.; Zhang Z.; Wang Y.; Zhang W.; Chen X. Biosens. Bioelectron. 2017, 87, 96.
[16]
(c) Jin X.; Wu S.; She M.; Jia Y.; Hao L.; Yin B.; Wang L.; Obst M.; Shen Y.; Zhang Y.; Li J. Anal. Chem. 2016, 88, 11253.
[16]
(d) Wang H.; Yang D.; Tan R.; Zhou Z. J.; Xu R.; Zhang J. F.; Zhou Y. Sens. Actuators, B 2017, 247, 883.
[17]
Raymond D. M.; Nilsson B. L. Chem. Soc. Rev. 2018, 47, 3659.
[18]
Gun J.; Modestov A. D.; Kamyshny A.; Ryzkov D.; Gitis V.; Goifman A.; Lev O.; Hultsch V.; Grischek T.; Worch E. Microchim. Acta 2004, 146, 229.
[19]
(a) Wang R.; Gu X.; Li Q.; Gao J.; Shi B.; Xu G.; Zhu T.; Tian H.; Zhao C. J. Am. Chem. Soc. 2020, 142, 15084.
[19]
(b) Qian Y.; Karpus J.; Kabil O.; Zhang S. Y.; Zhu H. L.; Banerjee R.; Zhao J.; He C. Nat. Commun. 2011, 2, 495.
[20]
(a) Chen Z.; Mu X.; Han Z.; Yang S.; Zhang C.; Guo Z.; Bai Y.; He W. J. Am. Chem. Soc. 2019, 141, 17973.
[20]
(b) Ge C.; Di X.; Han S.; Wang M.; Qian X.; Su Z.; Liu H. K.; Qian Y. Chem. Commun. 2021, 57, 1931.
[20]
(c) Teng Y.; Yang H.; Li X.; Wang Y. C.; Yin D. L.; Tian Y. L. Chin. J. Chem. 2022, 40, 209.
[21]
Wan Q.; Song Y.; Li Z.; Gao X.; Ma H. Chem. Commun. 2013, 49, 502.
[22]
(a) Xuan W.; Pan R.; Cao Y.; Liu K.; Wang W. Chem. Commun. 2012, 48, 10669.
[22]
(b) Liu C.; Pan J.; Li S.; Zhao Y.; Wu L. Y.; Berkman C. E.; Whorton A. R.; Xian M. Angew. Chem., Int. Ed. 2011, 50, 10327.
[23]
(a) An Y.; Wang P.; Yue Z. Spectrochim. Acta, Part A 2019, 216, 319.
[23]
(b) Sun M.; Yu H.; Li H.; Xu H.; Huang D.; Wang S. Inorg. Chem. 2015, 54, 3766.
[24]
(a) Ren X.; Wang F.; Lv J.; Wei T.; Zhang W.; Wang Y.; Chen X. Dyes Pigm. 2016, 129, 156.
[24]
(b) Li X.; Wang A.; Wang J.; Lu J. Anal. Chem. 2019, 91, 15703.
[24]
(c) Hu Y.; Chen Z. H.; Ma L. L.; Zhang Z. Y.; Zhang H.; Yi F. P.; Liu C. X. Tetrahedron 2022, 117, 132837.
[25]
Peng B.; Zhang C.; Marutani E.; Pacheco A.; Chen W.; Ichinose F.; Xian M. Org. Lett. 2015, 17, 1541.
[26]
Hong J.; Feng W.; Feng G. Sens. Actuators, B 2018, 262, 837.
[27]
(a) Kaushik R.; Ghosh A.; Singh A.; Jose D. A. Anal. Chim. Acta 2018, 1040, 177.
[27]
(b) Han H. H.; Tian H.; Zang Y.; Sedgwick A. C.; Li J.; Sessler J. L.; He X. P.; James T. D. Chem. Soc. Rev. 2021, 50, 9391.
[28]
(a) Geraghty C.; Wynne C.; Elmes R. B. P. Coord. Chem. Rev. 2021, 437, 213713.
[28]
(b) Zhou W.; Liang Q. X.; Wu A. B.; Su W. M.; Yu W. C. J. Appl. Polym. Sci. 2023, 140, https://doi.org/10.1002/app.53727
[28]
(c) Zhou W.; Chen Q.; Wu A. B.; Zhang Y.; Yu W. C. J. Chin. Chem. Soc. 2020, 67, 1213.
[28]
(d) Shi C. T.; Luo J.; Wang Y. C.; Ding L.; Liang Q.; Yang Z.; Lu J.; Wu A. B. Spectrochim. Acta, Part A 2023, 289, 122245.
[28]
(e) Shi C. T.; Yu M.; Wu A. B.; Luo J. X.; Li X. J.; Wang N. C.; Shu W. M.; Yu W. C. Chin. J. Org. Chem. 2022, 42, 2806. (in Chinese)
[28]
(师春甜, 余美, 吴爱斌, 罗江雄, 黎小军, 王宁晨, 舒文明, 余维初, 有机化学, 2022, 42, 2806.)
[28]
(f) Shi C. T.; Huang Z. Y.; Wu A. B.; Hu Y. X.; Wang N. C., Zhang Y.; Shu W. M.; Yu W. C. RSC Adv. 2021, 11, 29632.
[28]
(g) Ren J. B.; Wang L.; Guo R.; Tang Y. H.; Zhou H. M.; Lin W. Y. Acta Chim. Sinica 2021, 79, 87. (in Chinese)
[28]
(任江波, 王蕾, 郭锐, 唐永和, 周红梅, 林伟英, 化学学报, 2021, 79, 87.)
[29]
(a) Lee M. H.; Kim J. S.; Sessler J. L. Chem. Soc. Rev. 2015, 44, 4185.
[29]
(b) Goswami S.; Sen D.; Das N. K. Org. Lett. 2010, 12, 856.
[30]
Yang L. L.; Tang A. L.; Wang P. Y.; Yang S. Org. Lett. 2020, 22, 8234.
[31]
(a) Ma T.; Huo F.; Wen Y.; Glass T. E.; Yin C. Spectrochim. Acta, Part A 2019, 214, 355.
[31]
(b) Zhang J.; Mu S.; Wang Y.; Li S.; Shi X.; Liu X.; Zhang H. Anal. Chim. Acta 2022, 1195, 339457.
[31]
(c) Ou L.; Guo R.; Lin W. Anal. Methods 2021, 13, 1511.
[31]
(d) Zhang C.; Zhang L.; Li Y.; Ren Z.; Li L.; Zhang Y.; Li Y.; Liu C. J. Mol. Struct. 2022, 1250, 131777.
[31]
(e) Guo M. Y.; Wang W.; Ainiwaer D.; Yang Y. S.; Wang B. Z.; Yang J.; Zhu H. L. Talanta 2022, 237, 122960.
[31]
(f) Du Y.; Wang H.; Zhang T.; Wen W.; Li Z.; Bi M.; Liu J. Spectrochim. Acta, Part A 2022, 265, 120390.
[32]
Choi M. G.; Kim N. Y.; Lee Y. J.; Ahn S.; Chang S. K. Chem. Commun. 2019, 55, 11398.
[33]
Shi J.; Wang Y.; Tang X.; Liu W.; Jiang H.; Dou W.; Liu W. Dyes Pigm. 2014, 100, 255.
文章导航

/