光催化硅氢加成反应研究进展
收稿日期: 2023-02-28
修回日期: 2023-05-18
网络出版日期: 2023-07-27
Progress in Photocatalytic Hydrosilylation
Received date: 2023-02-28
Revised date: 2023-05-18
Online published: 2023-07-27
刘俊 , 彭家建 , 白赢 , 厉嘉云 , 宋姿洁 , 刘鹏 , 欧阳婷 , 兰慧林 . 光催化硅氢加成反应研究进展[J]. 有机化学, 2023 , 43(10) : 3558 -3568 . DOI: 10.6023/cjoc202302031
Organosilicon products have become an indispensable part of our lives today. Catalytic hydrosilylation reaction is one of the important methods for preparing organosilicon chemicals and materials. The research and development of inexpensive and excellent catalysts have received extensive attention. At present, the research on catalytic hydrosilylation mainly focuses on exploring the catalytic properties of new noble metal and non-precious metal complexes. However, due to the high cost of noble metals and the low catalytic activity of non-noble metal complexes, photocatalysis is an environmentally friendly and safe method. Catalytic methods and photocatalytic hydrosilylation reactions have received much attention. In this paper, the research progress of photocatalytic hydrosilylation in recent years is introduced.
Key words: hydrosilylation; photocatalysis; metal complexes; radical; photoinitiator
| [1] | Li Y.; Hammoud A.; Bouteiller L.; Raynal M. J. Am. Chem. Soc. 2020, 142, 5676. |
| [2] | Peng J. J.; Bai Y.; Li J. Y.; Lai G. Q. Curr. Org. Chem. 2011, 15, 2802. |
| [3] | Nakajima Y.; Shimada S. RSC Adv. 2015, 5, 20603. |
| [4] | Noda D.; Tahara A.; Sunada Y.; Nagashima H. J. Am. Chem. Soc. 2016, 138, 2480. |
| [5] | Tondreau A. M.; Altienza C. C. H.; Weller K. J; Nye S. A.; Lewis K. M.; Delis J. G. P.; Chirik P. J. Science 2012, 335, 567. |
| [6] | Greenhalgh M. D.; Frank D. J.; Thomas S. P. Adv. Synth. Catal. 2014, 356, 584. |
| [7] | Sun J.; Deng L. ACS Catal. 2016, 6, 290. |
| [8] | Chen C.; Hecht M. B.; Kavara A.; Brennessel W. W.; Mercado B. Q.; Weix D. J.; Holland P. L. J. Am. Chem. Soc. 2015, 137, 13244. |
| [9] | Abdelqader W.; Chmielewski D.; Grevels F.-W.; Oezkar S.; Peynircioglu N. B. Organometallics. 1996, 15, 604. |
| [10] | Boardman L. D. Organometallics 1992, 11, 4194. |
| [11] | Gee J. C.; Fuller B. A.; Lockett H. M.; Sedghi G.; Robertson C. M.; Luzyanin K. V. Chem. Commun. 2018, 54, 9450. |
| [12] | Mayer T.; Burget D.; Mignani G.; Fouassier J. Polym. Sci. 1996, 34, 3141. |
| [13] | Qrareya H.; Dondi D.; Ravelli D.; Fagnoni M. ChemCatChem 2015, 7, 3350. |
| [14] | Wilkinson J. R.; Nuyen C. E.; Carpenter T. S.; Harruff S. R.; Van Hoveln R. ACS Catal. 2019, 9, 8961. |
| [15] | Li J. S.; Wu J. ChemPhotoChem 2018, 2, 839. |
| [16] | Zhang X. P.; Fang J. K.; Cai C.; Lu G. P. Chin. Chem. Lett. 2021, 32, 1280. |
| [17] | Zhu S. F. Chin. J. Chem. 2021, 39, 3211. |
| [18] | Feng X. Q.; Meng W.; Du H. F. Chin. J. Chem. 2022, 40, 1109. |
| [19] | Robert A. F. Inorg. Chem. 1981, 20, 1357. |
| [20] | Zhong M. B.; Pannecoucke X.; Jubault P.; Poisson T. Chem. Eur. 2021, 27, 11818. |
| [21] | Qrareya H.; Dondi D.; Ravelli D.; Fagnoni M. ChemCatChem 2015, 7, 3350. |
| [22] | Vivien A.; Veyre L.; Mirgalet R.; Camp C.; Thieuleux C. Chem. Commun. 2022, 58, 4091. |
| [23] | Ding L.; Niu K. K.; Liu Y. X.; Wang Q. M. ChemSusChem. 2022, 15, e202200367. |
| [24] | Wei Y. H.; Han S. B.; Kim J.; Soh S.; Grzybowski B. A. J. Am. Chem. Soc. 2010, 132, 11018. |
| [25] | Yates R. L. J. Catal. 1982, 78, 111. |
| [26] | Do Y.; Han J.; Rhee Y. H.; Park J. Adv. Synth. Catal. 2011, 353, 3363. |
| [27] | Zheng J. X.; Chevance S.; Darcel C.; Sortais J. B. Chem. Commun. 2013, 49, 10010. |
| [28] | Oezkar S.; Akhmedov V. M.; Kayran C. Organomet Chem. 1996, 533, 103. |
| [29] | Kayran C.; Ozkar S.; Akhmedov V. M. Naturforsch 2003, 58b, 644. |
| [30] | Gee J. C.; Fuller B. A.; Lockett H. M.; Sedghi G.; Robertson C. M.; Luzyanin K. V. Chem. Commun. 2018, 54, 9450. |
| [31] | Liang H.; Ji Y. X.; Wang R. H.; Zhang Z. H.; Zhang B. Org. Lett. 2019, 21, 8, 2750. |
| [32] | Zhou R.; Goh Y. Y.; Liu H. W.; Tao H. R.; Li L. H.; Wu J. Angew. Chem., Int. Ed. 2017, 56, 16621. |
| [33] | Wan Y.; Zhu J. J.; Yuan Q. Y.; Wang W.; Zhang Y. Q. Org. Lett. 2021, 23, 1406. |
| [34] | Yu Z. H.; Dai Z. N.; Bai Y.; Li J. Y.; Yan Y.; Peng J. J. New J. Chem. 2021, 45, 10383. |
| [35] | Zhu J.; Cui W. C.; W S. Z.; Yao Z. J. Org. Lett. 2018, 20, 3174. |
| [36] | Zhu J.; Cui W. C.; Wang S. Z.; Yao Z. J. J. Org. Chem. 2018, 83, 14600. |
| [37] | Cai Y. Y.; Zhao W. X.; Wang S. Z.; Liang Y.; Yao Z. J. Org. Lett. 2019, 21, 9836. |
| [38] | Hou H.; Xu Y.; Yang H. B.; Chen X. Y.; Yan C. G.; Shi Y. C.; Zhu S. Q. Org. Lett. 2020, 22, 1748. |
| [39] | Cui W. C.; Zhao W. X.; Gao M.; Liu W.; Wang S. Z.; Liang Y.; Yao Z. J. Chem. Eur. J. 2019, 42, 16506. |
| [40] | Terry J.; Linford M. R.; Wigren C.; Cao R.Y.; Pianetta P.; Chidsey C. E. D. Appl. Phys. Lett. 1998, 71, 25. |
| [41] | Stewart M. P.; Buriak J. M. Angew. Chem., Int. Ed. 1998, 37, 23. |
| [42] | Kaur B.; Raza R.; Stashick M. J.; Branda N. R. Org. Chem. Front. 2019, 6, 1253. |
/
| 〈 |
|
〉 |