Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用
收稿日期: 2023-06-10
修回日期: 2023-07-10
网络出版日期: 2023-07-27
基金资助
国家自然科学基金(22171079); 上海市自然科学基金(21ZR1480400); 上海市启明星项目(20QA1402300); 上海市科技重大专项(2018SHZDZX03); 高等学校学科创新引智计划(B16017); 中国博士后科学基金(2021M701197); 上海市扬帆项目(23YF1408800); 中央高校基本科研专项基金资助项目
Exploration of Quinim Ligand in Ni-Catalyzed Enantioselective Reductive Carbamoyl-Alkylation of Alkene
Received date: 2023-06-10
Revised date: 2023-07-10
Online published: 2023-07-27
Supported by
National Natural Science Foundation of China(22171079); Natural Science Foundation of Shanghai(21ZR1480400); Shanghai Rising-Star Program(20QA1402300); Shanghai Municipal Science and Technology Major Project(2018SHZDZX03); Program of Introducing Talents of Discipline to Universities(B16017); China Postdoctoral Science Foundation(2021M701197); Shanghai Sailing Program(23YF1408800); Fundamental Research Funds for the Central Universities
发展手性配体是不对称催化的核心任务之一. 本工作报道了镍催化1,1-二取代烯烃衍生的胺甲酰氯与烷基碘代物的不对称还原胺甲酰基-烷基化反应, 构建了一系列对映选择性富集的α,α-双烷基取代的吡咯烷酮化合物. 通过对Quinim配体的广泛探索, 发现p-tolQuinim至1-NapQuinim配体的革新是该反应成功的关键, 能以高收率、高对映选择性及出色的官能团容忍性得到多样的α-位含有季碳中心的γ-内酰胺化合物. 此外, 研究发现, 新发展的Ni/1-NapQuinim催化体系也能提高α-单烷基取代γ-内酰胺的合成效率及对映选择性.
吴利城 , 伍贤青 , 曲景平 , 陈宜峰 . Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用[J]. 有机化学, 2023 , 43(12) : 4239 -4250 . DOI: 10.6023/cjoc202306006
The development of new chiral ligand constitutes the cornerstone of asymmetric catalysis. An asymmetric synthesis of α,α-dialkylated pyrrolidinones enabled by Ni-catalyzed reductive carbamoyl-alkylation of 1,1-disubstituted alkene- tethered carbamoyl chlorides and primary alkyl iodides is presented. After extensive investigation of Quinim ligands, it is found that the evolution of chiral ligand p-tolQuinim to 1-NapQuinim is critical for formation of the all-carbon quaternary center in high yield and enantioselectivity and broad functional group tolerance. The newly developed catalytic system that combines nickel salts and the 1-NapQuinim ligand also improves both the yield and enantioselectivity in the synthesis of α-monoalkylated γ-lactams.
Key words: Quinim ligand; nickel catalysis; quaternary stereocenters; γ-lactam
| [1] | For selected reviews, see: (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181. |
| [1] | (b) Liu Y.; Han S.-J.; Liu W.-B.; Stoltz B. M. Acc. Chem. Res. 2015, 48, 740. |
| [1] | (c) Li C.; Ragab S. S.; Liu G.; Tang W. Nat. Prod. Rep. 2020, 37, 276. |
| [2] | For selected reviews, see: (a) Ye, L.-W.; Shu, C.; Gagosz, F. Org. Biomol. Chem. 2014, 12, 1833. |
| [2] | (b) Caruano J.; Muccioli G. G.; Robiette R. Org. Biomol. Chem. 2016, 14, 10134. |
| [2] | (c) Pandey G.; Mishra A.; Khamrai J. Tetrahedron 2018, 74, 4903. |
| [3] | Enders D.; Teschner P.; Raabe G.; Runsink J. Eur. J. Org. Chem. 2001, 4463. |
| [4] | Behenna D. C.; Liu Y.; Yurini T.; Kim J.; White D. E.; Virgil S. C.; Stoltz B. M. Nat. Chem. 2012, 4, 130. |
| [5] | For other examples of enantioselective synthesis quaternary stereocenters of γ-lactams, see: (a) Nunokawa S.; Minamisawa M.; Nakano K.; Ichikawa Y.; Kotsuki H. Synlett 2015, 26, 2301. |
| [5] | (b) Hayashi M.; Bachman S.; Hashimoto S.; Eichman C. C.; Stoltz B. M. J. Am. Chem. Soc. 2016, 138, 8997. |
| [5] | (c) Jette C. I.; Geibel I.; Bachman S.; Hayashi M.; Sakurai S.; Shimizu H.; Morgan J. B.; Stoltz B. M. Angew. Chem., Int. Ed. 2019, 58, 4297. |
| [5] | (d) Wang Z.; Yin H.; Fu G. C. Nature 2018, 563, 379. |
| [6] | For reviews on transition metal-catalyzed difunctionalization of alkenes, see: (a) Coombs, J. R.; Morken, J. P. Angew. Chem., Int. Ed. 2016, 55, 2636. |
| [6] | (b) Dhungana R. K.; KC S. Basnet P.; Giri R. Chem. Rec. 2018, 18, 1314. |
| [6] | (c) Du T.; Li S.; He Y.; Long H.; Liu X.; Li H.-B.; Liu L. Chin. J. Chem. 2022, 40, 1681. |
| [6] | (d) Xu L.; Wang F.; Chen F.; Zhu S.; Chu L. Chin. J. Org. Chem. 2022, 42, 1. (in Chinese) |
| [6] | (徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, 1.) |
| [7] | (a) Shrestha M.; Wu X.; Huang W.; Qu J.; Chen Y. Org. Chem. Front. 2021, 8, 4024. |
| [7] | (b) Hande S. M.; Nakajima M.; Kamisaki H.; Tsukano C.; Takemoto Y. Org. Lett. 2011, 13, 1828. |
| [7] | (c) Wu X.; Tang Z.; Zhang C.; Wang C.; Wu L.; Qu J.; Chen Y. Org. Lett. 2020, 22, 3915. |
| [7] | (d) Zhang C.; Wu X.; Wang C.; Zhang C.; Qu J.; Chen Y. Org. Lett. 2020, 22, 6378. |
| [7] | (e) Wang C.; Zhao W.; Wu X.; Qu J.; Chen Y. Adv. Synth. Catal. 2020, 362, 4996. |
| [7] | (g) Yang F.; Sun W.; Meng H.; Chen M.; Chen C.; Zhu B. Org. Chem. Front. 2021, 8, 283. |
| [8] | For selected examples of transition metal-catalyzed enantioselective difunctionalization of activated alkenes tethered with carbamoyl chloride, see: (a) Whyte, A.; Burton, K. I.; Zhang, J.; Lautens, M. Angew. Chem., nt. Ed. 2018, 57, 13927. |
| [8] | (b) Marchese A. D.; Wollenburg M.; Mirabi B.; Abel-Snape X.; Whyte A. Glorius F. Lautens M. ACS Catal. 2020, 10, 4780. |
| [8] | (c) Fan P.; Lan Y.; Zhang C.; Wang C. J. Am. Chem. Soc. 2020, 142, 2180. |
| [9] | (a) Yasui Y.; Kamisaki H.; Ishida T.; Takemoto Y. Tetrahedron 2010, 66, 1980. |
| [9] | (b) Dreis A. M.; Otte S. C.; Eastwood M. S.; Alonzi E. R.; Brethorst J. T.; Douglas C. J. Eur. J. Org. Chem. 2017, 45. |
| [10] | (a) Li Y.; Zhang F.-P.; Wang R.-H.; Qi S.-L.; Luan Y.-X.; Ye M. J. Am. Chem. Soc. 2020, 142, 19844. |
| [10] | (b) He F.; Hou L.; Wu X.; Ding H.; Qu J.; Chen Y. CCS Chem. 2023, 5, 341. |
| [11] | Toreli A.; Whyte A.; Polishchuk I.; Bajohr J.; Lautens M. Org. Lett. 2020, 22, 7915. |
| [12] | For reviews on Ni-catalyzed difunctionalization of alkenes, see: (a) Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371. |
| [12] | (b) Tu H.-Y.; Zhu S.; Qing F.-L.; Chu L. Synthesis 2020, 52, 1346. |
| [12] | (c) Zhang Y.; Zhang Z.; Zhu S.; Chu L. Chin. J. Org. Chem. 2023, 43, 1023. |
| [13] | For recent examples on Ni-catalyzed enantioselective redox-neutral alkene dicarbofunctionalization, see: (a) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594. |
| [13] | (b) Nakao Y.; Ebata S.; Yada A.; Hiyama T.; Ikawa M.; Ogoshi S. J. Am. Chem. Soc. 2008, 130, 12874. |
| [13] | (c) Cong H.; Fu G. C. J. Am. Chem. Soc. 2014, 136, 3788. |
| [13] | (d) Chierchia M.; Xu P.; Lovinger G. J. Morken J. P. Angew. Chem., Int. Ed. 2019, 58, 14245. |
| [13] | (e) Guo L.; Yuan M.; Zhang Y.; Wang F.; Zhu S.; Gutierrez O.; Chu L. J. Am. Chem. Soc. 2020, 142, 20390. |
| [13] | (f) Apolinar O.; Kang T.; Alturaifi T. M.; Bedekar P. G.; Rubel C. Z.; Derosa J.; Sanchez B. B.; Wong Q. N.; Sturgell E. J.; Chen J. S.; Wisniewski S. R.; Liu P.; Engle K. M. J. Am. Chem. Soc. 2022, 144, 19337. |
| [13] | (g) Li X.; Yuan M.; Chen F.; Huang Z.; Qing F.-L.; Gutierrez O.; Chu L. Chem 2023, 9, 154. |
| [14] | For recent examples on Ni-catalyzed intramolecular asymmetric reductive difunctionalization of alkenes, see: (a) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. J. Am. Chem. Soc. 2018, 140, 12364. |
| [14] | (b) Jin Y.; Wang C. Angew. Chem., Int. Ed. 2019, 58, 6722. |
| [14] | (c) Tian Z.-X.; Qiao J.-B.; Xu G.-L.; Pang X.; Qi L.; Ma W.-Y.; Zhao Z.-Z.; Duan J.; Du Y.-F.; Su P.; Liu X.-Y.; Shu X.-Z. J. Am. Chem. Soc. 2019, 141, 7637. |
| [14] | (d) Peng Y.; Wang K.; Pan Q.; Ding Z.; Zhou Z.; Guo Y.; Kong W. ACS Catal. 2019, 9, 7335. |
| [14] | (e) Li Y.; Ding Z.; Lei A.; Kong W. Org. Chem. Front. 2019, 6, 3305. |
| [14] | (f) Ma T.; Chen Y.; Li Y.; Ping Y.; Kong W. ACS Catal. 2019, 9, 9127. |
| [14] | (g) He J.; Xue Y.; Han B.; Zhang C.; Wang Y.; Zhu S. Angew. Chem., Int. Ed. 2020, 59, 2328. |
| [14] | (h) Pan Q.; Ping Y.; Wang Y.; Guo Y.; Kong W. J. Am. Chem. Soc. 2021, 143, 10282. |
| [14] | (i) Qiao J.-B.; Zhang Y.-Q.; Yao Q.-W.; Zhao Z.-Z.; Peng X.; Shu X.-Z. J. Am. Chem. Soc. 2021, 143, 12961. |
| [14] | (j) Ping Y.; Li X.; Pan Q.; Kong W. Angew. Chem., Int. Ed. 2022, e202201574. |
| [14] | (k) Ping Y.; Pan Q.; Guo Y.; Liu Y.; Li X.; Wang M.; Kong W. J. Am. Chem. Soc. 2022, 144, 11626. |
| [14] | (l) Jia X.-G.; Yao Q.-W.; Shu X.-Z. J. Am. Chem. Soc. 2022, 144, 13461 |
| [15] | For recent examples on Ni-catalyzed intermolecular asymmetric reductive difunctionalization of alkenes, see: (a) Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Angew. Chem., Int. Ed. 2019, 58, 3198. |
| [15] | (b) Tu H.-Y.; Wang F.; Huo L.; Li Y.; Zhu S.; Zhao X.; Li H.; Qing F.-L.; Chu L. J. Am. Chem. Soc. 2020, 142, 9604. |
| [15] | (c) Wei X.; Shu W.; Garía-Domíngues A.; Merino E.; Nevado C. J. Am. Chem. Soc. 2020, 142, 13515. |
| [15] | (d) Wang F.; Pan S.; Zhu S.; Chu L. ACS Catal. 2022, 12, 9779. |
| [16] | Ni-catalyzed reductive coupling reviews, see: (a) Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793. |
| [16] | (b) Gu J.; Wang X.; Xue W.; Gong H. Org. Chem. Front. 2015, 2, 1411. |
| [16] | (c) Diccianni J. B.; Diao T. Trends Chem. 2019, 1, 830. |
| [16] | (d) Poremba K. E.; Dibrell S. E.; Reisman S. E. ACS Catal. 2020, 10, 8237. |
| [16] | (e) Ping Y.; Song H.; Kong W. Chin. J. Org. Chem. 2022, 42, 3302. |
| [17] | (a) Wu X.; Qu J.; Chen Y. J. Am. Chem. Soc. 2020, 142, 15654. |
| [17] | (b) Wu X.; Turlik A.; Luan B.; He F.; Qu J.; Houk K. N.; Chen Y. Angew. Chem. Int. Ed. 2022, 61, e202207536. |
| [17] | (c) Wu X.; Luan B.; Zhao W.; He F.; Wu X.-Y.; Qu J.; Chen Y. Angew. Chem. Int. Ed. 2022, 61, e202111598. |
| [17] | (d) Wu X.; Li H.; He F.; Qu J.; Chen Y. Chin. J. Chem. 2023, 41, 1673. |
| [17] | (e) Zhang C.; Wu X.; Xia T.; Qu J.; Chen Y. Nat. Commun. 2022, 13, 5964. |
| [17] | (f) Luan B.; Tang Z.; Wu X.; Chen Y. Synlett 2022, 33, 1847. |
| [18] | (a) Xi Y.; Wang C.; Zhang Q.; Qu J.; Chen Y. Angew. Chem., Int. Ed. 2021, 60, 2699. |
| [18] | (b) Xi Y.; Huang W.; Wang C.; Ding H.; Xia T.; Wu L.; Fang K.; Qu J.; Chen Y. J. Am. Chem. Soc. 2022, 144, 8389. |
| [18] | (c) Huang W.; Shrestha M.; Wang C.; Fang K.; Teng Y.; Qu J.; Chen Y. Org. Chem. Front. 2021, 8, 4106. |
| [18] | (d) Fang K.; Huang W.; Shan C.; Qu J. Chen Y. Org. Lett. 2021, 23, 5523. |
| [18] | (e) Yu Y.; Yin G. Chin. J. Org. Chem. 2022, 42, 2255. (in Chinese) |
| [18] | (于月, 阴国印, 有机化学, 2022, 42, 2255.) |
| [19] | (a) Lu P.; Wang H.; Mao Y.; Hong X.; Lu Z. J. Am. Chem. Soc. 2022, 144, 17359. |
| [19] | (b) Li J.; Yu B.; Lu Z. Chin. J. Chem. 2021, 39, 488. |
| [20] | (a) Wu X.-Y.; Li X.-H.; Zhou Q.-L. Tetrahedron: Asymmetry 1998, 9, 4143. |
| [20] | (b) Wu X.-Y.; Xu H.-D.; Zhou Q.-L.; Chan A. S. C. Tetrahedron: Asymmetry 2000, 11, 1255. |
| [20] | (c) Li Z.-P.; Wu X.-Y.; Zhou Q.-L.; Chan W.-L. Chin. J. Chem. 2001, 19, 40. |
/
| 〈 |
|
〉 |