研究论文

Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用

  • 吴利城 ,
  • 伍贤青 ,
  • 曲景平 ,
  • 陈宜峰
展开
  • 华东理工大学化学与分子工程学院 费林加诺贝尔奖科学家联合研究中心 材料生物学与动态化学前沿科学中心 上海 200237

收稿日期: 2023-06-10

  修回日期: 2023-07-10

  网络出版日期: 2023-07-27

基金资助

国家自然科学基金(22171079); 上海市自然科学基金(21ZR1480400); 上海市启明星项目(20QA1402300); 上海市科技重大专项(2018SHZDZX03); 高等学校学科创新引智计划(B16017); 中国博士后科学基金(2021M701197); 上海市扬帆项目(23YF1408800); 中央高校基本科研专项基金资助项目

Exploration of Quinim Ligand in Ni-Catalyzed Enantioselective Reductive Carbamoyl-Alkylation of Alkene

  • Licheng Wu ,
  • Xianqing Wu ,
  • Jingping Qu ,
  • Yifeng Chen
Expand
  • Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237

Received date: 2023-06-10

  Revised date: 2023-07-10

  Online published: 2023-07-27

Supported by

National Natural Science Foundation of China(22171079); Natural Science Foundation of Shanghai(21ZR1480400); Shanghai Rising-Star Program(20QA1402300); Shanghai Municipal Science and Technology Major Project(2018SHZDZX03); Program of Introducing Talents of Discipline to Universities(B16017); China Postdoctoral Science Foundation(2021M701197); Shanghai Sailing Program(23YF1408800); Fundamental Research Funds for the Central Universities

摘要

发展手性配体是不对称催化的核心任务之一. 本工作报道了镍催化1,1-二取代烯烃衍生的胺甲酰氯与烷基碘代物的不对称还原胺甲酰基-烷基化反应, 构建了一系列对映选择性富集的α,α-双烷基取代的吡咯烷酮化合物. 通过对Quinim配体的广泛探索, 发现p-tolQuinim至1-NapQuinim配体的革新是该反应成功的关键, 能以高收率、高对映选择性及出色的官能团容忍性得到多样的α-位含有季碳中心的γ-内酰胺化合物. 此外, 研究发现, 新发展的Ni/1-NapQuinim催化体系也能提高α-单烷基取代γ-内酰胺的合成效率及对映选择性.

本文引用格式

吴利城 , 伍贤青 , 曲景平 , 陈宜峰 . Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用[J]. 有机化学, 2023 , 43(12) : 4239 -4250 . DOI: 10.6023/cjoc202306006

Abstract

The development of new chiral ligand constitutes the cornerstone of asymmetric catalysis. An asymmetric synthesis of α,α-dialkylated pyrrolidinones enabled by Ni-catalyzed reductive carbamoyl-alkylation of 1,1-disubstituted alkene- tethered carbamoyl chlorides and primary alkyl iodides is presented. After extensive investigation of Quinim ligands, it is found that the evolution of chiral ligand p-tolQuinim to 1-NapQuinim is critical for formation of the all-carbon quaternary center in high yield and enantioselectivity and broad functional group tolerance. The newly developed catalytic system that combines nickel salts and the 1-NapQuinim ligand also improves both the yield and enantioselectivity in the synthesis of α-monoalkylated γ-lactams.

参考文献

[1]
For selected reviews, see: (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
[1]
(b) Liu Y.; Han S.-J.; Liu W.-B.; Stoltz B. M. Acc. Chem. Res. 2015, 48, 740.
[1]
(c) Li C.; Ragab S. S.; Liu G.; Tang W. Nat. Prod. Rep. 2020, 37, 276.
[2]
For selected reviews, see: (a) Ye, L.-W.; Shu, C.; Gagosz, F. Org. Biomol. Chem. 2014, 12, 1833.
[2]
(b) Caruano J.; Muccioli G. G.; Robiette R. Org. Biomol. Chem. 2016, 14, 10134.
[2]
(c) Pandey G.; Mishra A.; Khamrai J. Tetrahedron 2018, 74, 4903.
[3]
Enders D.; Teschner P.; Raabe G.; Runsink J. Eur. J. Org. Chem. 2001, 4463.
[4]
Behenna D. C.; Liu Y.; Yurini T.; Kim J.; White D. E.; Virgil S. C.; Stoltz B. M. Nat. Chem. 2012, 4, 130.
[5]
For other examples of enantioselective synthesis quaternary stereocenters of γ-lactams, see: (a) Nunokawa S.; Minamisawa M.; Nakano K.; Ichikawa Y.; Kotsuki H. Synlett 2015, 26, 2301.
[5]
(b) Hayashi M.; Bachman S.; Hashimoto S.; Eichman C. C.; Stoltz B. M. J. Am. Chem. Soc. 2016, 138, 8997.
[5]
(c) Jette C. I.; Geibel I.; Bachman S.; Hayashi M.; Sakurai S.; Shimizu H.; Morgan J. B.; Stoltz B. M. Angew. Chem., Int. Ed. 2019, 58, 4297.
[5]
(d) Wang Z.; Yin H.; Fu G. C. Nature 2018, 563, 379.
[6]
For reviews on transition metal-catalyzed difunctionalization of alkenes, see: (a) Coombs, J. R.; Morken, J. P. Angew. Chem., Int. Ed. 2016, 55, 2636.
[6]
(b) Dhungana R. K.; KC S. Basnet P.; Giri R. Chem. Rec. 2018, 18, 1314.
[6]
(c) Du T.; Li S.; He Y.; Long H.; Liu X.; Li H.-B.; Liu L. Chin. J. Chem. 2022, 40, 1681.
[6]
(d) Xu L.; Wang F.; Chen F.; Zhu S.; Chu L. Chin. J. Org. Chem. 2022, 42, 1. (in Chinese)
[6]
(徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, 1.)
[7]
(a) Shrestha M.; Wu X.; Huang W.; Qu J.; Chen Y. Org. Chem. Front. 2021, 8, 4024.
[7]
(b) Hande S. M.; Nakajima M.; Kamisaki H.; Tsukano C.; Takemoto Y. Org. Lett. 2011, 13, 1828.
[7]
(c) Wu X.; Tang Z.; Zhang C.; Wang C.; Wu L.; Qu J.; Chen Y. Org. Lett. 2020, 22, 3915.
[7]
(d) Zhang C.; Wu X.; Wang C.; Zhang C.; Qu J.; Chen Y. Org. Lett. 2020, 22, 6378.
[7]
(e) Wang C.; Zhao W.; Wu X.; Qu J.; Chen Y. Adv. Synth. Catal. 2020, 362, 4996.
[7]
(g) Yang F.; Sun W.; Meng H.; Chen M.; Chen C.; Zhu B. Org. Chem. Front. 2021, 8, 283.
[8]
For selected examples of transition metal-catalyzed enantioselective difunctionalization of activated alkenes tethered with carbamoyl chloride, see: (a) Whyte, A.; Burton, K. I.; Zhang, J.; Lautens, M. Angew. Chem., nt. Ed. 2018, 57, 13927.
[8]
(b) Marchese A. D.; Wollenburg M.; Mirabi B.; Abel-Snape X.; Whyte A. Glorius F. Lautens M. ACS Catal. 2020, 10, 4780.
[8]
(c) Fan P.; Lan Y.; Zhang C.; Wang C. J. Am. Chem. Soc. 2020, 142, 2180.
[9]
(a) Yasui Y.; Kamisaki H.; Ishida T.; Takemoto Y. Tetrahedron 2010, 66, 1980.
[9]
(b) Dreis A. M.; Otte S. C.; Eastwood M. S.; Alonzi E. R.; Brethorst J. T.; Douglas C. J. Eur. J. Org. Chem. 2017, 45.
[10]
(a) Li Y.; Zhang F.-P.; Wang R.-H.; Qi S.-L.; Luan Y.-X.; Ye M. J. Am. Chem. Soc. 2020, 142, 19844.
[10]
(b) He F.; Hou L.; Wu X.; Ding H.; Qu J.; Chen Y. CCS Chem. 2023, 5, 341.
[11]
Toreli A.; Whyte A.; Polishchuk I.; Bajohr J.; Lautens M. Org. Lett. 2020, 22, 7915.
[12]
For reviews on Ni-catalyzed difunctionalization of alkenes, see: (a) Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371.
[12]
(b) Tu H.-Y.; Zhu S.; Qing F.-L.; Chu L. Synthesis 2020, 52, 1346.
[12]
(c) Zhang Y.; Zhang Z.; Zhu S.; Chu L. Chin. J. Org. Chem. 2023, 43, 1023.
[13]
For recent examples on Ni-catalyzed enantioselective redox-neutral alkene dicarbofunctionalization, see: (a) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
[13]
(b) Nakao Y.; Ebata S.; Yada A.; Hiyama T.; Ikawa M.; Ogoshi S. J. Am. Chem. Soc. 2008, 130, 12874.
[13]
(c) Cong H.; Fu G. C. J. Am. Chem. Soc. 2014, 136, 3788.
[13]
(d) Chierchia M.; Xu P.; Lovinger G. J. Morken J. P. Angew. Chem., Int. Ed. 2019, 58, 14245.
[13]
(e) Guo L.; Yuan M.; Zhang Y.; Wang F.; Zhu S.; Gutierrez O.; Chu L. J. Am. Chem. Soc. 2020, 142, 20390.
[13]
(f) Apolinar O.; Kang T.; Alturaifi T. M.; Bedekar P. G.; Rubel C. Z.; Derosa J.; Sanchez B. B.; Wong Q. N.; Sturgell E. J.; Chen J. S.; Wisniewski S. R.; Liu P.; Engle K. M. J. Am. Chem. Soc. 2022, 144, 19337.
[13]
(g) Li X.; Yuan M.; Chen F.; Huang Z.; Qing F.-L.; Gutierrez O.; Chu L. Chem 2023, 9, 154.
[14]
For recent examples on Ni-catalyzed intramolecular asymmetric reductive difunctionalization of alkenes, see: (a) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. J. Am. Chem. Soc. 2018, 140, 12364.
[14]
(b) Jin Y.; Wang C. Angew. Chem., Int. Ed. 2019, 58, 6722.
[14]
(c) Tian Z.-X.; Qiao J.-B.; Xu G.-L.; Pang X.; Qi L.; Ma W.-Y.; Zhao Z.-Z.; Duan J.; Du Y.-F.; Su P.; Liu X.-Y.; Shu X.-Z. J. Am. Chem. Soc. 2019, 141, 7637.
[14]
(d) Peng Y.; Wang K.; Pan Q.; Ding Z.; Zhou Z.; Guo Y.; Kong W. ACS Catal. 2019, 9, 7335.
[14]
(e) Li Y.; Ding Z.; Lei A.; Kong W. Org. Chem. Front. 2019, 6, 3305.
[14]
(f) Ma T.; Chen Y.; Li Y.; Ping Y.; Kong W. ACS Catal. 2019, 9, 9127.
[14]
(g) He J.; Xue Y.; Han B.; Zhang C.; Wang Y.; Zhu S. Angew. Chem., Int. Ed. 2020, 59, 2328.
[14]
(h) Pan Q.; Ping Y.; Wang Y.; Guo Y.; Kong W. J. Am. Chem. Soc. 2021, 143, 10282.
[14]
(i) Qiao J.-B.; Zhang Y.-Q.; Yao Q.-W.; Zhao Z.-Z.; Peng X.; Shu X.-Z. J. Am. Chem. Soc. 2021, 143, 12961.
[14]
(j) Ping Y.; Li X.; Pan Q.; Kong W. Angew. Chem., Int. Ed. 2022, e202201574.
[14]
(k) Ping Y.; Pan Q.; Guo Y.; Liu Y.; Li X.; Wang M.; Kong W. J. Am. Chem. Soc. 2022, 144, 11626.
[14]
(l) Jia X.-G.; Yao Q.-W.; Shu X.-Z. J. Am. Chem. Soc. 2022, 144, 13461
[15]
For recent examples on Ni-catalyzed intermolecular asymmetric reductive difunctionalization of alkenes, see: (a) Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Angew. Chem., Int. Ed. 2019, 58, 3198.
[15]
(b) Tu H.-Y.; Wang F.; Huo L.; Li Y.; Zhu S.; Zhao X.; Li H.; Qing F.-L.; Chu L. J. Am. Chem. Soc. 2020, 142, 9604.
[15]
(c) Wei X.; Shu W.; Garía-Domíngues A.; Merino E.; Nevado C. J. Am. Chem. Soc. 2020, 142, 13515.
[15]
(d) Wang F.; Pan S.; Zhu S.; Chu L. ACS Catal. 2022, 12, 9779.
[16]
Ni-catalyzed reductive coupling reviews, see: (a) Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793.
[16]
(b) Gu J.; Wang X.; Xue W.; Gong H. Org. Chem. Front. 2015, 2, 1411.
[16]
(c) Diccianni J. B.; Diao T. Trends Chem. 2019, 1, 830.
[16]
(d) Poremba K. E.; Dibrell S. E.; Reisman S. E. ACS Catal. 2020, 10, 8237.
[16]
(e) Ping Y.; Song H.; Kong W. Chin. J. Org. Chem. 2022, 42, 3302.
[17]
(a) Wu X.; Qu J.; Chen Y. J. Am. Chem. Soc. 2020, 142, 15654.
[17]
(b) Wu X.; Turlik A.; Luan B.; He F.; Qu J.; Houk K. N.; Chen Y. Angew. Chem. Int. Ed. 2022, 61, e202207536.
[17]
(c) Wu X.; Luan B.; Zhao W.; He F.; Wu X.-Y.; Qu J.; Chen Y. Angew. Chem. Int. Ed. 2022, 61, e202111598.
[17]
(d) Wu X.; Li H.; He F.; Qu J.; Chen Y. Chin. J. Chem. 2023, 41, 1673.
[17]
(e) Zhang C.; Wu X.; Xia T.; Qu J.; Chen Y. Nat. Commun. 2022, 13, 5964.
[17]
(f) Luan B.; Tang Z.; Wu X.; Chen Y. Synlett 2022, 33, 1847.
[18]
(a) Xi Y.; Wang C.; Zhang Q.; Qu J.; Chen Y. Angew. Chem., Int. Ed. 2021, 60, 2699.
[18]
(b) Xi Y.; Huang W.; Wang C.; Ding H.; Xia T.; Wu L.; Fang K.; Qu J.; Chen Y. J. Am. Chem. Soc. 2022, 144, 8389.
[18]
(c) Huang W.; Shrestha M.; Wang C.; Fang K.; Teng Y.; Qu J.; Chen Y. Org. Chem. Front. 2021, 8, 4106.
[18]
(d) Fang K.; Huang W.; Shan C.; Qu J. Chen Y. Org. Lett. 2021, 23, 5523.
[18]
(e) Yu Y.; Yin G. Chin. J. Org. Chem. 2022, 42, 2255. (in Chinese)
[18]
(于月, 阴国印, 有机化学, 2022, 42, 2255.)
[19]
(a) Lu P.; Wang H.; Mao Y.; Hong X.; Lu Z. J. Am. Chem. Soc. 2022, 144, 17359.
[19]
(b) Li J.; Yu B.; Lu Z. Chin. J. Chem. 2021, 39, 488.
[20]
(a) Wu X.-Y.; Li X.-H.; Zhou Q.-L. Tetrahedron: Asymmetry 1998, 9, 4143.
[20]
(b) Wu X.-Y.; Xu H.-D.; Zhou Q.-L.; Chan A. S. C. Tetrahedron: Asymmetry 2000, 11, 1255.
[20]
(c) Li Z.-P.; Wu X.-Y.; Zhou Q.-L.; Chan W.-L. Chin. J. Chem. 2001, 19, 40.
文章导航

/