综述与进展

光/电催化醚α-位官能团化研究进展

  • 刘颖杰 ,
  • 石岗庆 ,
  • 仇格 ,
  • 张鑫 ,
  • 宋冬雪 ,
  • 陈宁 ,
  • 于淼 ,
  • 许颖
展开
  • a 哈尔滨商业大学药学院 哈尔滨 150076
    b 烟台大学化学化工学院 烟台 264005
    c 哈尔滨医科大学附属第一医院 哈尔滨 150001

收稿日期: 2023-05-10

  修回日期: 2023-06-25

  网络出版日期: 2023-07-27

基金资助

黑龙江省自然科学基金(LH2020H068); 黑龙江省教育厅创新人才(UNPYSCT-2018139); 高校学科协同创新成果建设培育(LJGXCG2022-086)

Progress of α-Position Functionalization of Ethers under Photo/Electrocatalysis

  • Yingjie Liu ,
  • Gangqing Shi ,
  • Ge Chou ,
  • Xin Zhang ,
  • Dongxue Song ,
  • Ning Chen ,
  • Miao Yu ,
  • Ying Xu
Expand
  • a School of Pharmacy, Harbin University of Commerce, Harbin 150076
    b School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005
    c The First Affiliated Hospital of Harbin Medical University, Harbin 150001

Received date: 2023-05-10

  Revised date: 2023-06-25

  Online published: 2023-07-27

Supported by

The Natural Science Foundation of Heilongjiang Province(LH2020H068); The Innovative Talent Project of Ministry of Education of Heilongjiang Province(UNPYSCT-2018139); The Construction and Cultivation of Collaborative Innovation Achievements of Disciplines in Colleges and Universities(LJGXCG2022-086)

摘要

醚类化合物由于其优异的物理化学性质广泛应用于有机化学、材料科学、生物医药等领域. 其中, 四氢呋喃/四氢噻吩及其衍生物更是构建生物活性分子和复杂的天然产物的核心骨架. 光/电催化因其符合绿色化学要求, 以及大多涉及自由基中间体的独特路径, 近年来已逐步成为化学家们合成新颖化合物的重要手段. 利用光/电催化实现醚类化合物α-位的官能团化是一种绿色、高效的合成策略. 因此, 以氧醚/硫醚为例, 综述了光/电催化醚类化合物α-位官能团化的研究进展, 并对部分机理做了详细的介绍.

本文引用格式

刘颖杰 , 石岗庆 , 仇格 , 张鑫 , 宋冬雪 , 陈宁 , 于淼 , 许颖 . 光/电催化醚α-位官能团化研究进展[J]. 有机化学, 2023 , 43(8) : 2664 -2681 . DOI: 10.6023/cjoc202305011

Abstract

Ethers are widely used in organic chemistry, materials science, biomedicine and other fields due to their excellent physicochemical properties. Among them, tetrahydrofuran/tetrahydrothiophene and their derivatives are the core backbones for building biologically active molecules and complex natural products. In recent years, photo/electrocatalysis has gradually become an important tool for chemists to synthesize novel compounds due to its compliance with the requirements of green chemistry and the unique pathway that mostly involves radical intermediates. The functionalization of α-positions of ethers using photo/electrocatalysis is a green and efficient synthetic strategy. Therefore, the research progress of photo/electro- catalytic functionalization of ether compounds at the α-position is reviewed with ether/sulfide as examples, and a detailed description of some of the mechanisms is provided.

参考文献

[1]
Dong, G.-B.; Liu, P.; Yu, X.; Kevlishvili, l.; Lyu, H. Science 2021, 372, 175.
[2]
Qin, Y.; Zhu, L.-H.; Luo, S.-Z. Chem. Rev. 2017, 117, 9433.
[3]
Wang, Z.-C.; Li, Zhen.-J.; Sun, K. Chin. Chem. Lett. 2023, 34, 108045.
[4]
Saleem, M.; Kim, H. J.; Ali, M. S.; Lee, Y. S. Nat. Prod. Rep. 2005, 22, 696.
[5]
Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407.
[6]
Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science 2015, 349, 1532.
[7]
Esswein, A. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022.
[8]
Wan, M.; Meng, Z.-L.; Lou, H.-X.; Liu, L. Angew. Chem. Int. Ed. 2014, 53, 13845.
[9]
Wang, G.; Xin, X.-D. Wang, Z.-H.; Lu, G.; Ma, Y.-D.; Liu, L. Nat. Commun. 2019, 10, 559.
[10]
Morton, C. M.; Zhu, Q.-L.; Ripberger, H.; Troian-Gautier, L.; Toa, Z. S. D.; Knowles, R. R.; Alexanian, E. J. J. Am. Chem. Soc. 2019, 141, 13253.
[11]
Mammoli, V.; Bonifazi, A.; Del Bello, F.; Diamanti, E.; Giannella, M.; Hudson, A. L.; Mattioli, L.; Perfumi, M.; Piergentili, A.; Quaglia, W.; Titomanlio, F.; Pigini, M. Bioorg. Med. Chem. 2012, 20, 2259.
[12]
(a) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369.
[12]
(b) Paolillo, J. M.; Duke, A. D.; Gogarnoiu, E. S.; Wise, D. E.; Parasram, M. J. Am. Chem. Soc. 2023, 145, 2794.
[13]
Noisier, A. F. M.; Brimble, M. A. Chem. Rev. 2014, 114, 8775.
[14]
Wang, X.-Y, Luo, N.-C, Wang, F. Chin. J. Chem. 2022, 40, 1492.
[15]
Guo, X.-X.; Gu, D.-W.; Wu, Z.-X.; Zhang, W.-B. Chem. Rev. 2015, 115, 1622.
[16]
Du, W.; Gu, Q.-S.; Li, Z.-L.; Yang, D. J. Am. Chem. Soc. 2015, 137, 1130.
[17]
Song, R.-J.; Tu, Y.-Q.; Zhu, D.-Y.; Zhang, F.-M.; Wang, S.-H. Chem. Commun. 2015, 51, 749.
[18]
Yang, Y.; Cho, I.; Qi, X.-T.; Liu, P.; Arnold, F. H. Nat. Chem. 2019, 11, 987.
[19]
Cui, H.-B.; Xie, L.-Z.; Wan, N.-W.; He, Q.; Li, Z.; Chen, Y.-Z. Green Chem. 2019, 21, 4324.
[20]
Alwaseem, H.; Giovani, S.; Crotti, M.; Welle, K.; Jordan, C. T.; Ghaemmagham, S.; Fasan, R. ACS Cent. Sci. 2021, 7, 841.
[21]
Wang, X.; Meng, J.-P.; Zhao, D.-Y.; Tang, S.; Sun, K. Chin. Chem. Lett. 2023, 34, 107736.
[22]
Deshidi, R.; Rizvi, M. A.; Shah, B. A. RSC Adv. 2015, 5, 90521.
[23]
Qin, W.-J.; Li, Y.; Yu, X.-X.; Deng, W.-P. Tetrahedron 2015, 71, 1182.
[24]
(a) Sun, K.; Zhao, D.-Y.; Li, Q.-X.; Ni, S.-F.; Zheng, G.-F.; Zhang, Q. Sci. China Chem. 2023, doi:10.1007/s11426-023-1622-1.
[24]
(b) Gao, C.; Xiong, Y.-J. Chin. J. Chem. 2022, 40, 153.
[25]
Kalthoff, F. S.; James, M. J.; Teders, M.; Pitzer, L.; Glorius, F. Chem. Soc. Rev. 2018, 47, 7190.
[26]
Qin, Q.; Jiang, H.; Hu, Z.-T.; Ren, D.-A.; Yu, S.-Y. Chem. Rec. 2017, 17, 754.
[27]
Ravelli, D.; Protti, S.; Fagnoni, M. Acc. Chem. Res. 2016, 49, 2232.
[28]
Sperry, J. B. Wright, D. L. Chem. Soc. Rev. 2006, 35, 605.
[29]
Takacs, J. M.; Jiang, X.-T. Curr. Org. Chem. 2003, 7, 369.
[30]
Guo, S.-R.; Kumar, P. S.; Yang, M.-H. Adv. Synth. Catal. 2017, 359, 2.
[31]
Sun, K.; Lei, J.; Liu, Y.-J.; Liu, B.; Chen, N. Adv. Synth. Catal. 2020, 362, 3709.
[32]
(a) Yu, W.-J.; Wang, S.-C.; He, M.; Jiang, Z.; Yu, Y.; Lan, J.-P.; Luo, J.; Wang, P.-J.; Qi, X.-T.; Wang, T.; Lei, A.-W. Angew. Chem. Int. Ed. 2023, 135, e202219166.
[32]
(b) Chen, M.-X, Liu, Y.; Song, T.-W.; Wei, R.-L.; Zhuang, X.-D.; Yang, Y.-Y.; Liang, H.-W. Chin. J. Chem. 2022, 40, 2161.
[33]
Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58, 4592.
[34]
Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 10626.
[35]
Koeller, J.; Gandeepan, P.; Ackermann, L. Synthesis 2019, 51, 1284.
[36]
Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan, J.-D.; Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. Angew. Chem. Int. Ed. 2018, 57. 8514.
[37]
Qiao, J.; Song, Z.-Q.; Huang, C.; Ci, R, -N.; Liu, Z.; Chen, B.; Tung, C.-G.; W, L.-Z. Angew. Chem. Int. Ed. 2021, 60, 27201.
[38]
Pulcinella, A.; Bonciolini, S.; Lukas, F.; Sorato, A.; No?l, T. Angew. Chem. Int. Ed. 2023, 135, e202215374.
[39]
Liu, Z.-H.; Wang, H.-W.; Sivaguru, P.; Nolan, S. P.; Song, Q.-M.; Yu, W.-J.; Jiang, X.-J.; Anderson, E. A.; Bi, X.-H. Nat. Commun. 2022, 13, 1674.
[40]
Feng, S.-B.; Xie, X.-G.; Zang, W.-W.; Liu, L.; Zhong., Z.-Z.; Xu, D.-Y.; She, X.-G. Org. Lett. 2016, 18, 3846.
[41]
Heitz, D. R.; Tellis., J. C.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 12715.
[42]
Kamijo. S.; Takao. G.; Kamijo. K.; Hirota. M.; Tao. K.; Murafuji. T. Angew. Chem. Int. Ed. 2016, 55, 9695.
[43]
Ryu, I.; Niguma, T.; Minakata, S.; Komatsu, M.; Hadida, S.; Curran, D. P. Tetrahedron Lett. 1997, 38, 7883.
[44]
Deng, H.-P.; Fan, X.-Z.; Chen, Z.-H.; Xu, Q.-H.; Wu, J. J. Am. Chem. Soc. 2016, 139, 13579.
[45]
Zhang, M.; Zhao, Y.; Chen, W.-Z. Synthesis 2017, 49, 1342
[46]
Go, S. Y.; Lee, G. S.; Hong, S. H. Org. Lett. 2018, 20, 4691.
[47]
Song, Z.-Q.; Liu, Z.; Gan, Q.-C.; Lei, T.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2020, 22, 832.
[48]
Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. J. Am. Chem. Soc. 2019, 84, 4543.
[49]
Kibriya, G.; Bagdi, A. K.; Hajra, A. J. Org. Chem. 2018, 83, 10619.
[50]
Wan, Z.-J.; Yuan, X.-F.; Luo, J. Org. Biomol. Chem. 2020, 18, 3258.
[51]
Jiang, S.; Tian, X.-J.; Feng, S.-Y.; Li, S.-J.; Li, Z.-W.; Lu, C.-H.; Li, C.-J.; Liu, W.-D. Org. Lett. 2021, 23, 692.
[52]
Zhang, K.; Qiao, L.; Xie, J.-W.; Lin, Z.-W.; Li, H.-J.; Lv, P.; Wang, Y.-G. J. Org. Chem. 2021, 86, 9552.
[53]
Jin, C.; Yan, Z.-Y.; Sun, B.; Yang, J. Org. Lett. 2019, 21, 2064.
[54]
Tan, Y.-S.; Kun, W.-X.; Han, Y.-P.; Zhang, Y.-C.; Zhang, H.-Y.; Zhao, J.-Q. J. Org. Chem. 2022, 87, 8551.
[55]
Hua, H.-L.; Wang, G.-P.; Cheng, J.-L.; Liang, Y.-M.; Zhao, J.-H. Asian J. Org. Chem. 2022, 11, e202100726.
[56]
Cao, C.-L.; Zhang, G.-X.; Xue, F.; Deng, H.-P. Org. Chem. Front. 2022, 9, 959.
[57]
Dey, J.; Paul, S.; Bhakat, M.; Guin, J. Org. Lett. 2022, 24, 8047.
[58]
Zhang, L.; Pfund, B.; Wenger, O. S.; Hu, X.-L. Angew. Chem. Int. Ed. 2022, 61, e202202649.
[59]
Xu, S.; Ping, Y.-Y.; Li, W.; Guo, H.-Y.; Su, Y.-Y.; Li, Z.-Y.; Wang, M.-Y.; Kong, W.-Q. J. Am. Chem. Soc. 2023, 145, 5231.
[60]
Wang, M.; Xie, X.-F.; Liu, J.; Wang, L. Eur. J. Org. Chem. 2020, 1534.
[61]
Adak, T.; Hoffmann, M.; Witzel, S.; Rudolph, M.; Dreuw, A.; Hashmi, A. S. K. Chem.-Eur. J. 2020, 26, 15573.
[62]
Zhang, L.-L.; Yi, H.; Wang, J.; Lei, A.-W. J. Org. Chem. 2017, 82, 10704.
[63]
Rodina, L. L.; Azarova, X. V.; Medvedev, J. J.; Semenok, D. V. Nikolaev, V. A. Beilstein J. Org. Chem. 2018, 14, 2250.
[64]
Guerra, D. H.; Hlava?ková, A.; Pramthaisong, C.; Vespoli, l.; Pohl, R.; Slanina, T.; Jahn, U. Angew. Chem. Int. Ed. 2019, 58, 12440.
[65]
Papadopoulos, G. N.; Kokotou, M. G.; Spiliopoulou, N.; Nikitas, N. F.; Voutyritsa, E.; Tzaras, D. I.; Kaplaneris, N.; Kokotos, C. G. ChemSusChem 2020, 13, 5934.
[66]
Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Montanaro, S.; Fagnoni, M. Org. Lett. 2013, 15, 2554.
[67]
Wan, T.; Capaldo, L.; Laudadio, G.; Nyuchev, A. V.; Rincón, J. A.; García-Losada, P.; Mateos, C.; Frederick, M. O.; Nu?o, M.; No?l, T. Angew. Chem. Int. Ed. 2021, 60, 17893.
[68]
Roy, S.; Chatterjee, I. ACS Org. Inorg. Au. 2022, 2, 306.
[69]
Jurberg, I. D.; Nome, R. A.; Crespi, S.; Atvars, T. D. Z.; K?nig, B. Adv. Synth. Catal. 2022, 364, 4061.
[70]
Ye, B.-H.; Zhao, J.; Zhao, K.; Mekenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2018, 140, 8350.
[71]
Coric, I.; Muller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370.
[72]
Si, X.-J.; Zhang, L.-M.; Wu, Z.-Z.; Rudolph, M.; Asiri, A. M.; Hashmi, A. S. K. Org. Lett. 2020, 22, 584.
[73]
Spiliopoulou, N.; Koutoulogenis, G S.; Kokotos, C G. Photochem. Photobiol. Sci. 2022, 21, 687.
[74]
Zhu, X.-J.; Xie, X.-Y.; Li, P.-H.; Guo, J.-Q.; Wang, L. Org. Lett. 2016, 18, 1546.
[75]
Uchikura, T.; Hara, Y.; Tsubono, K.; Akiyama, T. ACS Org. Inorg. Au. 2021, 1, 23.
[76]
Liu, B.; Lim, C.-H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616.
[77]
Li, T.; Liang, K.-J.; Tang, J.-Y.; Ding, Y.-Z.; Xia, C.-F. Chem. Sci. 2021, 12, 15655.
[78]
Niu, B.; Sachidanandan, K.; Cooke, M. V.; Casey, T. E.; Laulhé, S. Org. Lett. 2022, 24, 4524.
[79]
Wu, J.-W.; Zhou, Y.; Zhou, Y.-C.; Chiang, C. W.; Lei, A.-W. ACS Catal. 2017, 7, 8320.
[80]
Huang, R.-L.; Yu, C.-J.; Patureau, F. W. ChemElectroChem 2021, 8, 3943.
[81]
Wang, Z.; Liu, Y.-X.; Song, H.-J.; Wang, Q.-M. Green Chem. 2023, 25, 1970.
[82]
Huang, H.; Strater, Z. M.; Lambert, T. H. J. Am. Chem. Soc. 2020, 142, 1698.
[83]
Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 14275.
文章导航

/