综述与进展

有机盐发光材料研究进展

  • 王粉 ,
  • 王兰婷 ,
  • 王罡 ,
  • 钱程 ,
  • 周映霞 ,
  • 郑昕
展开
  • 河南农业大学理学院 郑州 450002

收稿日期: 2023-05-05

  修回日期: 2023-07-18

  网络出版日期: 2023-08-15

Research Progress of Fluorescent Organic Salts

  • Fen Wang ,
  • Lanting Wang ,
  • Gang Wang ,
  • Cheng Qian ,
  • Yingxia Zhou ,
  • Xin Zheng
Expand
  • College of Science, Henan Agricultural University, Zhengzhou 450002

Received date: 2023-05-05

  Revised date: 2023-07-18

  Online published: 2023-08-15

摘要

有机盐发光材料因其离子性而具有光热稳定性好、熔点高、水溶性好、强静电相互作用及生物相容性好等优点, 在生物监测、防伪和光学材料等领域展现出广阔的应用前景. 目前, 一系列基于氮杂环芳香鎓盐、季铵盐、季鏻盐以及基于柔性烯键和腙键等特定性能的有机盐发光材料被开发出来. 该综述对有机盐发光材料的分子设计、发光原理及其最新研究进展进行了分类总结, 并对该领域的发展进行了展望.

关键词: 有机盐; 发光材料; 进展

本文引用格式

王粉 , 王兰婷 , 王罡 , 钱程 , 周映霞 , 郑昕 . 有机盐发光材料研究进展[J]. 有机化学, 2023 , 43(12) : 4147 -4156 . DOI: 10.6023/cjoc202305004

Abstract

Organic salt fluorescent materials have the advantages of good photothermal stability, high melting point, good water solubility, strong electrostatic interactions and good biocompatibility due to their ionic nature, showing broad application prospects in the fields of biomonitoring, anti-counterfeiting and optical materials. Based on this, many organic salt luminescent materials with excellent properties, such as nitrogen heterocyclic aromatic onium salt, hydrazone salt, quaternary ammonium salt and quaternary phosphonium salt, have been developed. In this review, the molecular design, luminescence principle and recent progress of organic salt fluorescent materials are classified and summarized, and the development in this field is prospected.

参考文献

[1]
Tao P.; Miao Y.; Wang H.; Xu B.; Zhao Q. Chem. Rec. 2019, 19, 1531.
[2]
Liang Z. P.; Tang R.; Qiu Y. C.; Wang Y.; Lu H. B.; Wu Z. G. Acta Chim. Sinica 2021, 79, 1401. (in Chinese)
[2]
(梁志鹏, 唐瑞, 邱雨晨, 王阳, 陆洪彬, 吴正光, 化学学报, 2021, 79, 1401.)
[3]
Li S. W.; Zhu C. Y. J.; Luo Y. H.; Zhang Y. R.; Teng H. M.; Wang Z. R.; Zhen R. G. Acta Chim. Sinica 2022, 80, 1600. (in Chinese)
[3]
(李善武, 朱陈宇杰, 罗尹豪, 张亚茹, 滕汉明, 王宗瑞, 甄永刚, 化学学报, 2022, 80, 1600.)
[4]
Li J.; Wang J.; Li H.; Song N.; Wang D.; Tang B. Z. Chem. Soc. Rev. 2020, 49, 1144.
[5]
Zhang J.; Ye H.; Jin Y.; Han D. Top. Curr. Chem. 2022, 380, 1.
[6]
Dong S.; Li Z. J. Mater. Chem. C 2022, 10, 2431.
[7]
Zhou Y.; Qu J. ACS Appl. Mater. Interfaces 2017, 9, 3209.
[8]
Berthiot R.; del Giudice N.; Douce L. Eur. J. Org. Chem. 2021, 2021, 4099.
[9]
Chen X.; Yan L.; Liu Y.; Yang Y.; You J. Chem. Commun. 2020, 56, 15080.
[10]
Qin J.; Guo J.; Xu Q.; Zheng Z.; Mao H.; Yan F. ACS Appl. Mater. Interfaces 2017, 9, 10504.
[11]
Park C.; Meghani N. M.; Shin Y.; Oh E.; Park J. B.; Cui J. H.; Tran T. T-D.; Tran P. H-L.; Lee B. J. Pharmaceutics 2019, 11, 102.
[12]
Alam P.; He W.; Leung N. L.; Ma C.; Kwok R. T.; Lam J. W.; Sung H. H.; Ian D. Williams.; Wong K. S.; Tang B. Z. Adv. Funct. Mater. 2020, 30, 1909268.
[13]
Yeung M. C. L.; Yam V. W. W. Chem. Soc. Rev. 2015, 44, 4192.
[14]
Hu H., Meier F., Zhao D., Abe Y., Gao Y., Chen B., Salim T.; Chia E. E.; Qiao X.; Deibel C.; Lam Y. M. Adv. Mater. 2018, 30, 1707621.
[15]
Wang S. J.; Lin Y.; Zhang C. K.; Zhu T.; Tian X. H.; Li D. D.; Ma W.; Zhang Q.; Wu J. Y.; Tian Y. P. Anal. Chem. 2022, 94, 4335.
[16]
Zuo Y.; Wang X.; Wu D. J. Mater. Chem. C 2019, 7, 14555.
[17]
Leduskrasts K.; Suna E. RSC Adv. 2019, 9, 460.
[18]
Asanuma Y.; Eguchi H.; Nishiyama H.; Tomita I.; Inagi S. Org. Lett. 2017, 19, 1824.
[19]
Liu X.; Yang Z.; Xu W.; Chu Y.; Yang J.; Yan Y.; Wang Y.; Hua J. J. Mater. Chem. C 2019, 7, 12509.
[20]
Traven V. F.; Cheptsoy D. A. Russ. Chem. Rev. 2020, 89, 713.
[21]
Wang Z.; Bai W.; Tong J.; Wang Y. J.; Qin A.; Sun J. Z.; Tang B. Z. Chem. Commun. 2016, 52, 10365.
[22]
Chen R.; Gao X.; Cheng X.; Qin A.; Sun J. Z.; Tang B. Z. Polym. Chem. 2017, 8, 6277.
[23]
Tanabe K.; Suzui Y.; Hasegawa M.; Kato T. J. Am. Chem. Soc. 2012, 134, 5652.
[24]
Li Y.; Zhuang J.; Lu Y.; Li N.; Gu M.; Xia J.; Zhao N.; Tang B. Z. ACS Nano 2021, 15, 20453.
[25]
Zhao X.; Chen Y.; Niu G.; Gu D.; Wang J.; Cao Y.; Yin Y.; Li X.; Ding D.; Xi R.; Meng M. ACS Appl. Mater. Interfaces 2019, 11, 13134.
[26]
Choi S. Y.; Cho S.; Kim D.; Kim J.; Song G.; Singh R.; Kim C. J. Membrane Sci. 2021, 620, 118904.
[27]
Riduan S. N.; Zhang Y. Chem. Soc. Rev. 2013, 42, 9055.
[28]
Lü L. R.; Tang G. M.; Wang Y. T.; Ng S. W. J. Lumin. 2018, 199, 200.
[29]
Xie P. H.; Zhou Y.; Li X. C.; Liu X. J.; Liu L. J.; Cao Z. Q.; Wang J. J.; Zheng X. Chin. Chem. Lett. 2022.
[30]
Zhao N.; Yang Z.; Lam J. W.; Sung H. H.; Xie N.; Chen S.; Su H.; Gao M.; Ian D. W.; Kam S.; Tang B. Z. Chem. Commun. 2012, 48, 8637.
[31]
Wang J.; Gu X.; Ma H.; Peng Q.; Huang X.; Zheng X.; Sung S.; Shan G.; Lam J.; Shuai Z.; Tang B. Z. Nat. Commun. 2018, 9, 2963.
[32]
Pawar A.; Korake S.; Pawar A.; Kamble R. Curr. Drug Delivery 2022.
[33]
Rokitskaya T. I.; Murphy M. P.; Skulachev V. P.; Antonenko Y. N. Bioelectrochemistry 2016, 111, 23.
[34]
Rokitskaya T. I.; Aleksandrova E. V.; Korshunova G. A.; Khailova L. S.; Tashlitsky V. N.; Luzhkov V. B.; Antonenko Y. N. J. Phys. Chem. 2022, 126, 412.
[35]
Hu Q.; Gao M.; Feng G.; Liu B. Angew. Chem., Int. Edit. 2014, 53, 14225.
[36]
Zeng W.; Lin M. H.; Zhu L. Y.; Lin M. J. Chin. J. Chem. 2022, 40, 39.
[37]
Zhang Y.; Huo F.; Yin C.; Yue Y.; Hao J.; Chao J.; Liu D. Sens. Actuators, B 2015, 207, 59.
[38]
Wen T.; Luo J.; Jia K.; Lu L. Int. J. Heat Mass Transfer 2022, 190, 122761.
[39]
Lee J. Y.; Selfridge K. M.; Kohn E. M.; Vaden T. D.; Caputo G. A. Biomolecules 2019, 9, 264.
[40]
Forman M. E.; Fletcher M. H.; Jennings M. C.; Duggan S. M.; Minbiole K. P.; Wuest W. M. ChemMedChem 2016, 11, 958.
[41]
Panzarasa G.; Osypova A.; Toncelli C.; Buhmann M. T.; Rottmar M.; Ren Q.; Maniura-Weber K.; Rossi R. M.; Boesel L. F. Sens. Actuators, B 2017, 249, 156.
[42]
Qiao F.; Ke J.; Liu Y.; Pei B.; Hu Q.; Tang B. Z.; Wang Z. Carbohydr. Polym. 2020, 230, 115614.
[43]
Tong H.; Hong Y.; Dong Y.; H?u?ler M.; Lam J. W.; Li Z.; Guo Z.; Guo Z.; Tang B. Z. Chem. Commun. 2006, 3705.
[44]
Tang S.; Zhao Z.; Chen J.; Yang T.; Wang Y.; Chen X.; Lv M.; Yuan W. Z. Angew. Chem., Int. Edit. 2022, 134, e202117368.
[45]
Can N. ?.; Osmaniye D.; Levent S.; Sa?llk B. N.; Inci B.; Ilg?n S.; ?zkay Y.; Kaplanc?kll Z. A. Molecules 2017, 22, 1381.
[46]
Rawat P.; Singh R. N.; Niranjan P.; Ranjan A.; Holguín N. R. F. J. Mol. Struct. 2017, 1149, 539.
[47]
Juwiyatri E.; Fauza S. N.; Afriana N. J. Phys.: Conf. Ser. 2021, 2049, 012050.
[48]
Filo J.; Tisovsky P.; Csicsai K.; Donovalová J.; Gáplovsky M.; Gáplovsky A.; Cigáň M. RSC Adv. 2019, 9, 15910.
[49]
Tian D. J.; Zheng X.; Li X. C.; Liu X. J.; Zhao J. H.; Wang J. J. Chem.-Eur. J. 2019, 25, 16519.
[50]
Wang M. Y.; Shi J.; Mao H. L.; Sun Z.; Guo S. Y.; Guo J. N.; Yan F. Biomacromolecules 2019, 20, 3161.
文章导航

/