基于N-亚硝基导向的芳烃C(sp2)—H键官能团化研究进展
收稿日期: 2023-05-24
修回日期: 2023-07-11
网络出版日期: 2023-08-15
基金资助
浙江省自然科学基金(LZ22B020003); 国家自然科学基金(22071171)
Recent Advances in Functionalization of Aromatic C(sp2)—H Bonds Based on N-Nitroso Direction
Received date: 2023-05-24
Revised date: 2023-07-11
Online published: 2023-08-15
Supported by
Natural Science Foundation of Zhejiang Province(LZ22B020003); National Natural Science Foundation of China(22071171)
王芳 , 王磊 . 基于N-亚硝基导向的芳烃C(sp2)—H键官能团化研究进展[J]. 有机化学, 2023 , 43(12) : 4157 -4167 . DOI: 10.6023/cjoc202305029
In recent years, examples of activation of aromatic C(sp2)—H bonds successfully constructing C—C bonds and C—heteroatom bonds through N-nitroso synergistic chelation with transition metals have been reported. It is based on the oxidative cleavage of internal N—N bonds, and does not require the addition of external oxidants during the reaction process. After the reaction completion, it can leave on its own, which has made it develop into a new and efficient directing group, and has received widespread attention from researchers. The latest research progress on functionalization of aromatic C(sp2)—H bonds based on N-nitroso direction is summarized.
| [1] | (a) González J. M.; Vidal X.; Ortun?o M. A.; Mascaren?as J. L.; Gulías M. J. Am. Chem. Soc. 2022, 144, 21437. |
| [1] | (b) Thombal R. S.; Rubio P. Y. M.; Lee D.; Maiti D.; Lee Y. R. ACS Catal. 2022, 12, 5217. |
| [1] | (c) Yang S.; Zhang Y. G. Org. Lett. 2022, 24, 9060. |
| [1] | (d) Müller S.; Lee W.; Song J. Y.; Kang E.; Joo J. M. Chem. Commun. 2022, 58, 10809. |
| [1] | (e) Chen Y.-Z.; Bao G.-Y.; Zhan X.-C.; Fu J.-G.; Ji X.-M.; Zhang S.-S.; Feng C.-G. Chin. J. Chem. 2022, 40, 2188. |
| [1] | (f) Nale S. D.; Maiti D.; Lee Y. R. Org. Lett. 2021, 23, 2465. |
| [1] | (g) Aslam M.; Mohandoss S.; Lee Y. R. Org. Lett. 2021, 23, 6206. |
| [1] | (h) Wang S. Q.; Miao E.; Wang H.; Song B. C.; Huang W.; Yang W. B. Chem. Commun. 2021, 57, 5929. |
| [1] | (i) Fu L. Q.; Xu W. Q.; Pu M. P.; Wu Y. D.; Liu Y. Y.; Wan J. P. Org. Lett. 2022, 24, 3003. |
| [1] | (j) Liu Y. Y.; Qu Y. L.; Kang Y. S.; Zhu Y. L.; Sun W. Y.; Lu Y. Org. Lett. 2022, 24, 3118. |
| [1] | (k) Paul T.; Basak S.; Punniyamurthy T. Org. Lett. 2022, 24, 6000. |
| [1] | (l) Raziullah; Kumar M.; Ahmad A.; Dutta H. S.; Rastogi A.; Gangwarc M. K.; Koley D. Chem. Commun. 2022, 58, 3481. |
| [1] | (m) Mohanty S. R.; Prusty N.; Nanda T.; Banjare S. K.; Ravikumar P. C. J. Org. Chem. 2022, 87, 6189. |
| [1] | (n) Shan C. H.; Zhu L.; Qu L. B.; Bai R. P.; Lan Y. Chem. Soc. Rev. 2018, 47, 7552. |
| [1] | (o) Xu C. F.; Tassone J. P.; Mercado B. Q.; Ellman J. A. Angew. Chem., Int. Ed. 2022, 61, e202202364. |
| [1] | (p) Prasad S.; Tantillo D. J. Organometallics 2022, 41, 937. |
| [1] | (q) Chen H. Y.; Wang L. L.; Xu S.; Liu X. H.; He Q.; Song L. J.; Ji H. B. ACS Catal. 2021, 11, 6810. |
| [1] | (r) Kim Y. L.; Park S.; Choi S. M.; Park J. U.; Kim J. H. Org. Lett. 2021, 23, 6674. |
| [1] | (s) Zhao X.; Yang F.; Zou S. Y.; Zhou Q. Q.; Chen Z. S.; Ji K. G. ACS Catal. 2022, 12, 1732. |
| [1] | (t) Lu C. H.; Li X. H.; Chang S. Q.; Zhang Y. Q.; Xing D. H.; Wang S.; Lin Y. P.; Jiang H. F.; Huang L. B. Org. Chem. Front. 2022, 9, 2382. |
| [1] | (u) Mao R. Z.; Bera S.; Turla A. C.; Hu X. L. J. Am. Chem. Soc. 2021, 143, 14667. |
| [1] | (v) Pal S.; Cotard M.; Gérardin B.; Hoarau C.; Schneider C. Org. Lett. 2021, 23, 3130. |
| [1] | (w) Dong Y. X.; Breit B. Org. Lett. 2021, 23, 6765. |
| [1] | (x) Ma J.-L.; Zhou X.-M.; Guo P.-H.; Cheng H.-C.; Ji H.-B. Chin. J. Chem. 2022, 40, 1204. |
| [1] | (y) Song Q. H.; Zhao H.; Sun Y. P.; Jiang H. F.; Zhang M. Chin. J. Chem. 2022, 40, 371. |
| [1] | (z) Tang K. H. N.; Uchida K.; Nishihara K.; Ito M.; Shibata T. Org. Lett. 2022, 24, 1313. |
| [1] | (aa) Tanaka K.; Hattori H.; Yabe R.; Nishimura T. Chem. Commun. 2022, 58, 5371. |
| [1] | (ab) Shibata T.; Kojima M.; Onoda S.; Ito M. Org. Lett. 2021, 23, 8158. |
| [1] | (ac) Hoque M. E.; Bisht R.; Haldar C.; Chattopadhyay B. J. Am. Chem. Soc. 2017, 139, 7745. |
| [2] | (a) Wu Y. T.; Pi C.; Wu Y. J.; Cui X. L. Chem. Soc. Rev. 2021, 50, 3677. |
| [2] | (b) Yang K.; Song M. J.; Liu H.; Ge H. B. Chem. Sci. 2020, 11, 12616. |
| [2] | (c) Abrams D. J.; Provencher P. A.; Sorensen E. J. Chem. Soc. Rev. 2018, 47, 8925. |
| [2] | (d) Bhattacharya T.; Pimparkara S.; Maiti D. RSC Adv. 2018, 8, 19456. |
| [2] | (e) Qin Y.; Zhu L. H.; Luo S. Z. Chem. Rev. 2017, 117, 9433. |
| [3] | Zhu R. Y.; Farmer M. E.; Chen Y. Q.; Yu J. Q. Angew. Chem., Int. Ed. 2016, 55, 10578. |
| [4] | (a) Li H. L.; Yang M.; Jin L. Y.; Yang Y. F.; She Y. B. J. Org. Chem. 2021, 86, 13475. |
| [4] | (b) Yang S.; Wang F.; Wu Y. Q.; Hua W. K.; Zhang F. Z. Org. Lett. 2018, 20, 1491. |
| [4] | (c) Yu J. L.; Zhang S. Q.; Hong X. J. Am. Chem. Soc. 2017, 139, 7224. |
| [4] | (d) Mandal A.; Sahoo H.; Dana S.; Baidya M. Org. Lett. 2017, 19, 4138. |
| [4] | (e) Bettadapur K. R.; Lanke V.; Prabhu K. R. Chem. Commun. 2017, 53, 6251. |
| [4] | (f) Chen S. Q.; Li X. R.; Li C.-J.; Fan J.; Liu Z.-W.; Shi X.-Y. Org. Lett. 2020, 22, 1259. |
| [4] | (g) Srinivas K.; Siddiqui S. K.; Mudaliar J. K.; Ramana C. V. J. Org. Chem. 2019, 84, 5056. |
| [4] | (h) Luo J. F.; Preciado S.; Araromi S. O.; Larrosa I. Chem.-Asian J. 2016, 11, 347. |
| [4] | (i) Liu X. Y.; Li X. Y.; Liu H.; Guo Q.; Lan J. B.; Wang R. L.; You J. S. Org. Lett. 2015, 17, 2936. |
| [4] | (j) Wang Y. W.; Li B.; Wang B. Q. Org. Lett. 2020, 22, 83. |
| [4] | (k) Barday M.; Janot C.; Halcovitch N. R.; Muir J.; A?ssa C. Angew. Chem., Int. Ed. 2017, 56, 13117. |
| [4] | (l) Shankar M.; Guntreddi T.; Ramesh E.; Sahoo A. K. Org. Lett. 2017, 19, 5665. |
| [5] | Gao R. Y.; Wang F.; Geng X.; Li C.-Y.; Wang L. Org. Lett. 2022, 24, 7118. |
| [6] | (a) Zhang J.; Jiang J. W.; Li Y. L.; Wan X. B. J. Org. Chem. 2013, 78, 11366. |
| [6] | (b) Potturi H. K.; Gurung R. K.; Hou Y. Q. J. Org. Chem. 2012, 77, 626. |
| [7] | Lee J.; Chen L.; West A. H.; Richter-Addo G. B. Chem. Rev. 2002, 102, 1019. |
| [8] | De S. R. Asian J. Org. Chem. 2021, 10, 980. |
| [9] | Liu B. Q.; Fan Y.; Gao Y.; Sun C.; Xu C.; Zhu J. J. Am. Chem. Soc. 2013, 135, 468. |
| [10] | Chen J. S.; Chen P.; Song C.; Zhu J. Chem.-Eur. J. 2014, 20, 14245. |
| [11] | (a) Singh S.; Prasad N. R.; Chufan E. E.; Patel B. A.; Wang Y. J.; Chen Z.-S.; Ambudkar S. V.; Talele T. T. J.Med. Chem. 2014, 57, 4058. |
| [11] | (b) Lee J.; Kim S. J.; Choi H.; Kim Y. H.; Lim I. T.; Yang H. M.; Lee C. S.; Kang H. R.; Ahn S. K.; Moon S. K.; Kim D.-H.; Lee S.; Choi N. S.; Lee K. J. J. Med. Chem. 2010, 53, 6337. |
| [11] | (c) Deng Y.; Chin Y.-W.; Chai H.; Keller W. J.; Kinghorn A. D. J. Nat. Prod. 2007, 70, 2049. |
| [12] | Zhang L.; Wang Z.; Guo P. Y.; Sun W.; Li Y. M.; Sun M.; Hua C. W. Tetrahedron Lett. 2016, 57, 2511. |
| [13] | Wu Y. N.; Sun L.; Chen Y. Y.; Zhou Q.; Huang J.-W.; Miao H.; Luo H.-B. J. Org. Chem. 2016, 81, 1244. |
| [14] | (a) Tian M. M.; Yang X. F.; Zhang B.; Liu B. X.; Li X. W. Org. Chem. Front. 2018, 5, 3406. |
| [14] | (b) Osada S.; Sano S.; Ueyama M.; Chuman Y.; Kodama H.; Sakaguchi K. Bioorg. Med. Chem. 2010, 18, 605. |
| [14] | (c) Oishi S.; Kamitani H.; Kodera Y.; Watanabe K.; Kobayashi K.; Narumi T.; Tomita K.; Ohno H.; Naito T.; Kodama E.; Matsuokab M.; Fujii N. Org. Biomol. Chem. 2009, 7, 2872. |
| [14] | (d) Yang L.; Ji W.-W.; Lin E.; Li J.-L.; Fan W.-X.; Li Q. J.; Wang H. G. Org. Lett. 2018, 20, 1924. |
| [15] | Tian M. M.; Yang X. F.; Zhang B.; Liu B. X.; Li X. W. Org. Chem. Front. 2018, 5, 3406. |
| [16] | Liu Z. S.; Zeng H.; Zhang W. J.; Song C.; Yang F.; Liu Y.; Zhu J. Polymer 2019, 172, 152. |
| [17] | He S.; Tan G. Y.; Luo A. P.; You J. S. Chem. Commun. 2018, 54, 7794. |
| [18] | Wang P.-L.; Wang Y.; Li Y.; Wang X.-S. Chem.-Asian J. 2020, 15,197. |
| [19] | Ouyang W. S.; Liu B. R.; He Y.; Wen Y. M.; Gao Y.; Huo Y. P.; Chen Q.; Li X. W. Org. Chem. Front. 2022, 9, 2746. |
| [20] | Peng R.-J.; Chen L.; Zhang X.-J.; Yan M. Adv. Synth. Catal. 2022, 364, 3567. |
| [21] | (a) Yu Y.; Jiang Y. M.; Wu S. F.; Shi Z. J.; Wu J. N.; Yuan Y. F.; Ye K.Y. Chin. Chem. Lett. 2022, 33, 2009. |
| [21] | (b) Wu Z.-L.; Chen J.-Y.; Tian X.-Z.; Ouyang W.-T.; Zhang Z.-T.; He W.-M. Chin. Chem. Lett. 2022, 33, 1501. |
| [21] | (c) Jiang J.; Wang Z.; He W.-M. Chin. Chem. Lett. 2021, 32, 1591. |
| [21] | (d) Li Z. B.; Sun Q.; Qian P.; Hu K. F.; Zha Z. G.; Wang Z. Y. Chin. Chem. Lett. 2020, 31, 1855. |
| [22] | Cao Y. M.; Yuan Y.; Lin Y. P.; Jiang X. M.; Weng Y. Q.; Wang T. W.; Bu F. X.; Zeng L.; Lei A. W. Green Chem. 2020, 22, 1548. |
| [23] | Wang X. Y.; Wu S. H.; Zhong Y. J.; Wang Y. C.; Pan Y. M.; Tang H. T. Chin. Chem. Lett. 2023, 34, 107537. |
| [24] | (a) Gao T. T.; Sun P. P. J. Org. Chem. 2014, 79, 9888. |
| [24] | (b) Gao T. T.; Yuan Y.; Liu P.; Sun P. P. Chin. Sci. Bull. 2015, 60, 2942. (in Chinese) |
| [24] | (高婷婷, 袁瑶, 刘平, 孙培培, 科学通报, 2015, 60, 2942.) |
| [25] | Li D.-D.; Cao Y.-X.; Wang G.-W.; Org. Biomol. Chem. 2015, 13, 6958. |
| [26] | Chen Y. Y.; Zhang R.; Peng Q. J.; Xu L. T.; Pan X. H. Chem.-Asian J. 2017, 12, 2804. |
| [27] | Li L.; Wang G.-W. Tetrahedron 2018, 74, 4188. |
| [28] | Jia X. D.; Yuan Y.; Sun Z.; Zhang S. W.; Zhang Y. X. Asian J. Org. Chem. 2019, 8, 2205. |
| [29] | (a) Dabiri M.; Lehi N. F.; Movahed S. K.; Khavasi H. R. Org. Biomol. Chem. 2017, 15, 6264. |
| [29] | (b) Testa C.; Gigot ê.; Genc S.; Decréau R.; Roger J.; Hierso J. C. Angew. Chem., Int. Ed. 2016, 55, 5555. |
| [29] | (c) Wang Y. X.; Li G.-X.; Yang G. H.; He G.; Chen G. Chem. Sci. 2016, 7, 2679. |
| [29] | (d) Pawar A. B.; Lade D. M. Org. Biomol. Chem. 2016, 14, 3275. |
| [29] | (e) Ding Q. P.; Zhou X. L.; Pu S. Z.; Cao B. P. Tetrahedron 2015, 71, 2376. |
| [30] | Peng Q. J.; Hu J.; Huo J. Y.; Yuan H. S.; Xu L. T.; Pan X. H. Org. Biomol. Chem. 2018, 16, 4471. |
| [31] | Liu B. Q.; Song C.; Sun C.; Zhou S. G.; Zhu J. J. Am. Chem. Soc. 2013, 135, 16625. |
| [32] | Wang C. M.; Huang Y. Org. Lett. 2013, 15, 5294. |
| [33] | Wang J.; Wang M. Y.; Chen K. H.; Zha S. K.; Song C.; Zhu J. Org. Lett. 2016, 18, 1178. |
| [34] | Liang Y. J.; Jiao N. Angew. Chem., Int. Ed. 2016, 55, 4035. |
| [35] | Chen Y. Y.; Zhang R.; Peng Q. J.; Xu L. T.; Pan X. H. Chem.-Asian J. 2017, 12, 2804. |
| [36] | Hu X. W.; Chen X.; Shao Y. X.; Xie H. S.; Deng Y. F.; Ke Z. F.; Jiang H. F.; Zeng W. ACS Catal. 2018, 8, 1308. |
| [37] | Wang H. N.; Li S. Q.; Wang B. Q.; Li B. Org. Chem. Front. 2018, 5, 88. |
| [38] | Song X.; Gao C.; Li B.; Zhang X. Y.; Fan X. S. J. Org. Chem. 2018, 83, 8509. |
| [39] | Liu Y. F.; Tian Y.; Su K. X.; Wang P. G.; Guo X.; Chen B. H. Org. Chem. Front. 2019, 6, 3973. |
| [40] | Wu Y. T.; Pi C.; Cui X. L.; Wu Y. J. Org. Lett. 2020, 22, 361. |
| [41] | Cui X.-F.; Huang G.-S. Org. Biomol. Chem. 2020, 18, 4014. |
| [42] | Peng R.-J.; Chen L.; Zhang X.-J.; Yan M. Adv. Syn. Catal. 2022, 364, 3567. |
| [43] | Li Z. Y.; Chen X. J.; Zhong H. L.; Lin Y. T.; Gao Y.; Liu Y.; Chen Q.; Huo Y. P.; Li X. W. Chem. Commun. 2022, 58, 13959. |
| [44] | Liu C. S.; Dai Q. Z.; Li Y. Q.; Huang C. H.; Guo L. J.; Yang Z. J. Org. Chem. 2023, doi:10.1021/acs.joc.3c00517. |
| [45] | Li C.; Yang Y. C.; Fang F. F.; Liu C. Y.; Li C. P.; Wang D. C.; Liu H. Chin. J. Chem. 2023, 41, 1957. |
| [46] | Wu Y. N.; Feng L.-J.; Lu X.; Kwong F. Y.; Luo H.-B. Chem. Commun. 2014, 50, 15352. |
| [47] | Dong J. W.; Wu Z. J.; Liu Z. Y.; Liu P.; Sun P. P. J. Org. Chem. 2015, 80, 12588. |
| [48] | Ouyang W. S.; Liu B. R.; He Y.; Wen Y. M.; Gao Y.; Huo Y. P.; Chen Q.; Li X. W. Org. Chem. Front. 2022, 9, 2746. |
| [49] | (a) Gao R.-H.; Zuo L.-L.; Wang F.; Li C.-Y.; Jiang H.-J.; Li P.-H.; Wang L. Chin. J. Org. Chem. 2022, 42, 1883. (in Chinese) |
| [49] | (高润烨, 左玲玲, 王芳, 李传莹, 蒋华江, 李品华, 王磊, 有机化学, 2022, 42, 1883.) |
| [49] | (b) Yang S.; Li P.; Wang Z.; Wang L. Org. Lett. 2017, 19, 3386. |
| [49] | (c) Ji W.; Li P.; Yang S.; Wang L. Chem. Commun. 2017, 53, 8482. |
| [49] | (d) Zhao L.; Li P.; Xie X.; Wang L. Org. Chem. Front. 2018, 5, 1689. |
| [49] | (e) Ren Y.; Meng L.-G.; Peng T.; Wang L. Org. Lett. 2018, 20, 4430. |
| [49] | (f) Zhang Y.; Chen W.; Jia X.; Wang L.; Li P. Chem. Commun. 2019, 55, 2785. |
| [49] | (g) Zhao L.; Li P.; Xie X.; Wang L. Org. Chem. Front. 2019, 6, 87. |
| [49] | (h) Ye R.; Ruan H.; Xu H.; Li Z.; Meng L.-G.; Wang L. Org. Chem. Front. 2021, 8, 5345. |
| [49] | (i) Ruan H.; Meng L.-G.; Zhu L.; Wang L. Adv. Synth. Catal. 2019, 361, 3217. |
| [49] | (j) Xu N.; Zhang Y.; Chen W.; Li P.; Wang L. Adv. Synth. Catal. 2018, 360, 1199. |
| [49] | (k) Mei Y.; Zhao L.; Liu Q.; Ruan S.; Wang L.; Li P. Green Chem. 2020, 22, 2270. |
| [50] | (a) Huo J.; Geng X.; Li W.; Zhang P.; Wang L. Org. Lett. 2023, 25, 512. |
| [50] | (b) Wan Q.; Hou Z.-W.; Zhao X.-R.; Xie X.; Wang L. Org. Lett. 2023, 25, 1008. |
| [50] | (c) Wang Z.; Wang L.; Wang Z.; Li P.; Zhang Y. Chin. Chem. Lett. 2021, 32, 429. |
| [50] | (d) Lv Y.; Hou Z.-W.; Li P.; Wang L. Org. Chem. Front. 2023, 10, 990. |
| [50] | (e) Pan S.; Song M.; Zuo L.; Geng X.; Wang L. J. Org. Chem. 2023, 88, 5586. |
| [50] | (f) Fang J.; Pan Z.; Liu T.; Rao Y.; Jiang H.; Ma Y. Org. Biomol. Chem. 2023, 21, 2355. |
| [50] | (g) Geng M.; Kuang J.; Miao M.; Ma Y. Org. Biomol. Chem. 2023, 21, 3101. |
| [50] | (h) Zhao P.; Wang L.; Guo X.; Chen J.; Wang Y.; Ma Y. Org. Lett. 2023, 25, 3314. |
| [50] | (i) Zhang Z.; Hou Z.-W.; Chen H.; Li P.; Wang L. Green Chem. 2023, 25, 3543. |
/
| 〈 |
|
〉 |