综述与进展

B(C6F5)3催化不饱和烃的硅化反应

  • 冯向青 ,
  • 杜海峰
展开
  • a 中国科学院化学研究所 中国科学院分子识别与功能重点实验室 北京 100190
    b 中国科学院大学 北京 100049

收稿日期: 2023-06-12

  修回日期: 2023-07-22

  网络出版日期: 2023-08-15

基金资助

国家自然科学基金(21825108)

B(C6F5)3-Catalyzed Silylation of Unsaturated Hydrocarbons

  • Xiangqing Feng ,
  • Haifeng Du
Expand
  • a CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2023-06-12

  Revised date: 2023-07-22

  Online published: 2023-08-15

Supported by

National Natural Science Foundation of China(21825108)

摘要

有机硅化合物由于其独特的性质, 在合成化学、药物化学、高分子化学和有机光电材料等领域具有广泛的应用. 不饱和化合物的硅化反应是获得有机硅化合物的重要途径之一, 因此引起了化学家的关注并取得了令人瞩目的进展. B(C6F5)3作为一类独特的非金属路易斯酸, 近年来, 其催化不饱和烃的硅化取得了重要的研究进展, 详细介绍了不饱和烃的硅化反应及机理研究.

本文引用格式

冯向青 , 杜海峰 . B(C6F5)3催化不饱和烃的硅化反应[J]. 有机化学, 2023 , 43(10) : 3544 -3557 . DOI: 10.6023/cjoc202306009

Abstract

Organosilicon compounds have been widely applied in synthetic chemistry, medicinal chemistry, polymer chemistry, organic photoelectric materials and other fields due to their unique properties. The silylation of unsaturated compounds represents one of the most important approaches for the synthesis of organosilicon compounds, which has attracted the intensive attention of chemists, and a great success has been achieved. As a unique non-metallic Lewis acid, B(C6F5)3-catalyzed silylation of unsaturated compounds has made a significant progress in recent years. This subject and the corresponding mechanism are demonstrated.

参考文献

[1]
(a) Tacke R.; Wannagat U. In Bioactive Organo-Silicon Compounds, Vol. 84, Springer, Berlin, 1979.
[1]
(b) Colvin E. Silicon in Organic Synthesis II, Butterworth, London, 1981, p. 325.
[1]
(c) Ojima I. The Chemistry of Organic Silicon Compounds, Eds.: Patai, S.; Rappoport, Z., Wiley Interscience, New York, 1989, p. 1479.
[1]
(d) Corey J. Y. Chemistry of Organic Silicon Compounds, Eds: Patai, S.; Rappoport, Z., Wiley, Chichester, 1989; Vols. 1 and 2, pp. 1-56.
[1]
(e) Pukhnarevich V. B.; Lukevics E.; Kopylova L. T.; Voronkov M. G. In Perspectives of Hydrosilylation, Ed.: Lukevics, E., Institute of Organic Synthesis, Riga, 1992.
[1]
(f) Brook M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; John Wiley & Sons, New York, 2000.
[2]
(a) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
[2]
(b) Fleming I.; Barbero A.; Walter D. Chem. Rev. 1997, 97, 2063.
[2]
(c) Sieburth S. M.; Nittoli T.; Mutahi A. M.; Guo L. Angew. Chem., Int. Ed. 1998, 37, 812.
[2]
(d) Mortensen M.; Husmann R.; Veri E.; Bolm C. Chem. Soc. Rev. 2009, 38, 1002.
[2]
(e) Min G. K.; Herna?ndez D.; Skrydstrup T. Acc. Chem. Res. 2013, 46, 457.
[2]
(f) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
[3]
(a) Cheng C.; Hartwig J. F. Chem. Rev. 2015, 115, 8946.
[3]
(b) Du X.; Huang Z. ACS Catal. 2017, 7, 1227.
[3]
(c) Zhang L.-Z. Ph.D. Dissertation, Lanzhou University, Lanzhou, 2017 (in Chinese).
[3]
(张立志, 博士论文, 兰州大学, 兰州, 2017.)
[3]
(d) Yang X. H.; Gao H. W.; Yan J. L.; Shi L. Chin. J. Org. Chem. 2022, 42, 4122 (in Chinese)
[3]
(杨惜晖, 高皓炜, 闫甲乐, 史雷, 有机化学, 2022, 42, 4122.)
[4]
Piers W. E. Adv. Organomet. Chem. 2005, 52, 1.
[5]
(a) Massey A. G.; Park A. J.; Stone F. G. A. Proc. Chem. Soc. 1963, 212.
[5]
(b) Massey A. G.; Park A. J. J. Organomet. Chem. 1964, 2, 245.
[6]
Piers W. E.; Chivers T. Chem. Soc. Rev. 1997, 26, 345.
[7]
Erker G. Dalton Trans. 2005, 1883.
[8]
(a) Piers W. E.; Marwitz A. J. V.; Mercier L. G. Inorg. Chem. 2011, 50, 12252.
[8]
(b) Melen R. L. Chem. Commun. 2014, 50, 1161.
[8]
(c) Oestreich M.; Hermeke J.; Mohr J. Chem. Soc. Rev. 2015, 44, 2202.
[9]
(a) Welch G. C.; San Juan R. R.; Masuda J. D.; Stephan D. W. Science 2006, 314, 1124.
[9]
(b) Stephan D. W. Acc. Chem. Res. 2015, 48, 306.
[9]
(c) Stephan D. W.; Erker G. Angew. Chem., Int. Ed. 2015, 54, 6400.
[9]
(c) Stephan D. W. J. Am. Chem. Soc. 2015, 137, 10018.
[9]
(d) Stephan D. W. Science 2016, 354, aaf7229.
[9]
(e) Wilkins L. C.; Melen R. L. Coord. Chem. Rev. 2016, 324, 123.
[9]
(f) Stephan D. W. J. Am. Chem. Soc. 2021, 143, 20002.
[10]
(a) Marciniec B. G.; Gulinski J.; Urbaniak W.; Kornetka Z. W. In Comprehensive Handbook on Hydrosilylation, Ed.: Marciniec, B. G., Pergamon, Oxford, U. K. 1992.
[10]
(b) Lewis L. N.; Stein J.; Gao Y.; Colborn R. E.; Hutchins G. Platinum Met. Rev. 1997, 41, 66.
[10]
(c) Roy A. K. Adv. Organomet. Chem. 2007, 55, 1.
[10]
(d) Clarson S. J. Silicon 2009, 1, 57.
[11]
Rubin M.; Schwier T.; Gevorgyan V. J. Org. Chem. 2002, 67, 1936.
[12]
Simonneau A.; Oestreich M. Angew. Chem., Int. Ed. 2013, 52, 11905.
[13]
Keess S.; Simonneau A.; Oestreich M. Organometallics 2015, 34, 790.
[14]
Simonneau A.; Oestreich M. Nat. Chem. 2015, 7, 816.
[15]
Gandhamsetty N.; Park J.; Jeong J.; Park S.-W.; Park S.; Chang S. Angew. Chem., Int. Ed. 2015, 54, 6832.
[16]
Kim Y.; Chang S. Angew. Chem., Int. Ed. 2016, 55, 218.
[17]
Kim E.; Park S.; Chang S. Chem. Eur. J. 2018, 24, 5765.
[18]
Ma Y.; Lou S. J.; Luo G.; Luo Y.; Zhan G.; Nishiura M.; Luo Y.; Hou Z. Angew. Chem., Int. Ed. 2018, 57, 15222.
[19]
Curless L. D.; Ingleson M. J. Organometallics 2014, 33, 7241.
[20]
Ma Y.; Wang B.; Zhang L.; Hou Z. J. Am. Chem. Soc. 2016, 138, 3663.
[21]
Gandhamsetty N.; Joung S.; Park S.-W.; Park S.; Chang S. J. Am. Chem. Soc. 2014, 136, 16780.
[22]
Gandhamsetty N.; Park S.; Chang S. J. Am. Chem. Soc. 2015, 137, 15176.
[23]
Curless L. D.; Clark E. R.; Dunsford J. J.; Ingleson M. J. Chem. Commun. 2014, 50, 5270.
[24]
Han Y.; Zhang S.; He J.; Zhang Y. J. Am. Chem. Soc. 2017, 139, 7399.
[25]
Hazra C. K.; Gandhamsetty N.; Park S.; Chang S. Nature Commun. 2016, 7, 13431.
[26]
Ma Y.; Zhang L.; Luo Y.; Nishiura M.; Hou Z. J. Am. Chem. Soc. 2017, 139, 12434.
[27]
Zhang J.; Park S.; Chang S. J. Am. Chem. Soc. 2018, 140, 13209.
[28]
Long P.-W.; He T.; Oestreich M. Org. Lett. 2020, 22, 7383.
[29]
Long P.-W.; Oestreich M. Org. Lett. 2021, 23, 4834.
文章导航

/