综述与进展

手性螺旋聚合物的合成和结构控制

  • 王倩 ,
  • 刘雨奇 ,
  • 吴宗铨
展开
  • a 皖西学院材料与化工学院 安徽六安 237012
    b 吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012

收稿日期: 2023-05-05

  修回日期: 2023-06-30

  网络出版日期: 2023-08-22

基金资助

安徽省高校自然科学研究(KJ2021A0942); 国家自然科学基金(92256201); 国家自然科学基金(22071041); 国家自然科学基金(21871073)

Synthesis and Structure Control of Chiral Helical Polymers

  • Qian Wang ,
  • Yuqi Liu ,
  • Zongquan Wu
Expand
  • a College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012
    b State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012

Received date: 2023-05-05

  Revised date: 2023-06-30

  Online published: 2023-08-22

Supported by

Natural Science Research Project of Universities in Anhui Province(KJ2021A0942); National Natural Science Foundation of China(92256201); National Natural Science Foundation of China(22071041); National Natural Science Foundation of China(21871073)

摘要

随着近些年研究的投入, 越来越多的手性螺旋聚合物被合成出来并应用于手性分离和光电材料等领域, 螺旋聚合物根据螺旋翻转壁垒的大小可以分为静态螺旋聚合物和动态螺旋聚合物. 主要聚焦于手性聚异氰酸酯、手性聚异腈和手性聚乙炔三类手性螺旋聚合物的合成和结构控制, 介绍手性单体聚合、螺旋选择性聚合、手性诱导和手性放大等几种手性螺旋聚合物的合成方法, 同时也介绍了构象调控、聚合诱导自组装等光学活性螺旋聚合物的合成方法.

本文引用格式

王倩 , 刘雨奇 , 吴宗铨 . 手性螺旋聚合物的合成和结构控制[J]. 有机化学, 2023 , 43(12) : 4141 -4146 . DOI: 10.6023/cjoc202305003

Abstract

Many researches have been done on artificial chiral helical polymers whose helical senses are excess because of their wide applications such as enantiomeric separation, photoelectric functional materials, and so on. Synthetic optically active helical polymers can be generally divided into static helical polymers and dynamic helical polymers on the basis of whether the helix inversion barriers are high or low. Among the three different kinds of helical polymers, polyisocyanates, polyisocyanides and polyacetylenes were mainly discussed in this review. And this review mainly focuses on the methods such as polymerization of chiral monomer, helix-sense-selective polymerization, chirality induction, chiral amplification, cis-cisoid to cis-transoid, polymerization-induced chiral self-assembly etc.

参考文献

[1]
Watso J. D.; Crick H. C. Nature 1953, 171, 737.
[2]
Shen J.; Okamoto Y. Chem. Rev. 2016, 116, 1094.
[3]
(a) Bak I. G.; Chae C.; Lee J.-S. Macromolecules 2022, 55, 1923.
[3]
(b) Song L.-F.; Zhou Y.-Y.; Gao T.; Yan P.-F.; Li H.-F. Acta Chim. Sinica 2021, 79, 1042. (in Chinese)
[3]
(宋龙飞, 周妍妍, 高婷, 闫鹏飞, 李洪峰, 化学学报, 2021, 79, 1042.)
[3]
(c) Zhai X.-Y.; Wang X.-Q.; Wu B.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21.
[4]
(a) Liu J.-Z.; Lam J. W. Y.; Tang B.-Z. Chem. Rev. 2009, 109, 5799.
[4]
(b) Nakano T.; Okamoto Y. Chem. Rev. 2001, 101, 4013.
[4]
(c) Cornelissen J. J. L. M.; Rowan A. E.; Nolte R. J. M.; Sommerdijk C N. A. J. M. Chem. Rev. 2001, 101, 4039.
[5]
Hanes C. S. New Phytol. 1937, 36, 189.
[6]
Pauling L.; Corey R. B.; Branson H. R. Proc. Natl. Acad. Sci. U. S. A. 1951, 378, 205.
[7]
Watson J. D.; Crick F. H. C. Nature 1953, 171, 737.
[8]
Natta G.; Pino P.; Corradini P.; Danusso F.; Mantica E.; Nazzanti G.; Moraglio G. J. Am. Chem. Soc. 1955, 77, 1708.
[9]
(a) Pino P.; Lorenzi G. P. J. Am. Chem. Soc. 1960, 82, 4745.
[10]
(a) Rowan A. E.; Nolte R. J. M. Angew. Chem., Int. Ed. 1998, 37, 63.
[10]
(b) Cornelissen J. J. L. M.; Rowan A. E.; Nolte R. J. M.; Sommerdijk N. A. J. M. Chem. Rev. 2001, 101, 4039.
[10]
(c) Okamoto Y.; Nakano T. Chem. Rev. 1994, 94, 349.
[10]
(d) Nakano T.; Okamoto Y. Chem. Rev. 2001, 101, 4013.
[10]
(e) Green M. M.; Peterson N. C.; Sato T.; Teramoto A.; Cook R.; Lifson S. Science 1995, 268, 1860.
[10]
(f) Fujiki M. Macromol. Rapid Commun. 2001, 22, 539.
[10]
(g) Wulff G. Angew. Chem., nt. Ed. Engl. 1989, 28, 21.
[10]
(h) Pu L. Acta Polym. 1997, 48, 116.
[10]
(i) Maeda K.; Yashima E. Top. Curr. Chem. 2006, 265, 47.
[10]
(j) Nakano T.; Okamoto Y. Chem. Rev. 2001, 101, 4013.
[11]
Okamoto Y.; Suzuki K.; Ohta K.; Hatada K.; Yuki H. J. Am. Chem. Soc. 1979, 101, 4763.
[12]
Green M. M.; Andreola C.; Mu?oz B.; Reidy M. P. J. Am. Chem. Soc. 1988, 110, 4063.
[13]
(a) Goodman M.; Chen S.-C. Macromolecules 1970, 3, 398.
[13]
(b) Goodman M.; Chen S.-C. Macromolecules 1971, 4, 625.
[14]
(a) Green M. M.; Gross R. A.; Crosby III C.; Schilling F. C. Macromolecules 1987, 20, 992.
[14]
(b) Hino K.; Maeda K.; Okamoto Y. J. Phys. Org. Chem. 2000, 13, 361.
[14]
(c) Shin Y.-D.; Ahn J.-H.; Lee J.-S. Macromol. Rapid Commun. 2001, 22, 1041.
[15]
(a) Green M. M.; Andreola C.; Peterson N. C. J. Am. Chem. Soc. 1989, 111, 8850.
[15]
(b) Gu H.; Nakamura H.; Sato T.; Teramoto A.; Green M. M.; Andreola C.; Peterson N. C.; Lifson S. Macromolecules 1995, 28, 1016.
[15]
(c) Green M. M.; Garetz B. A.; Munoz B.; Chang H. P.; Hoke S.; Cooks R. G. J. Am. Chem. Soc. 1995, 117, 4181.
[16]
Maeda K.; Okamoto Y. Polym. J. 1998, 30, 100.
[17]
(a) Chae C.-G.; Bak I. G.; Lee J.-S. Macromolecules 2018, 51, 6771.
[17]
(b) Shan P. N.; Chae C.-G.; Min J.; Shimada R.; Satoh T.; Kakuchi T.; Lee J.-S. Macromolecules 2014, 47, 2796.
[18]
Millich F. Adv. Polym. Sci. 1975, 19, 117.
[19]
(a) Drenth W.; Nolte R. J. M. Acc. Chem. Res. 1979, 12, 30.
[19]
(b) Kamer P. C. J.; Nolte R. J. M.; Drenth W. J. Am. Chem. Soc. 1988, 110, 6818.
[20]
Wada Y.; Shinohara K.; Asakawa H.; Matsui S.; Taima T.; Ikai T. J. Am. Chem. Soc. 2019, 141, 13995.
[21]
Wu Z.-Q.; Nagai K.; Banno M.; Okoshi K.; Onitsuka K.; Yashima E. J. Am. Chem. Soc. 2009, 131, 6708.
[22]
Xue Y.-X.; Zhu Y. -Y.; Gao L.-M.; He X.-Y.; Liu N.; Zhang W.-Y.; Yin J.; Ding Y.-S.; Zhou H.-P.; Wu Z.-Q. J. Am. Chem. Soc. 2014, 136, 4706.
[23]
Yang L.; Tang Y.; Liu N.; Liu C.-H.; Ding Y.-S.; Wu Z.-Q. Macromolecules 2016, 49, 7692.
[24]
Jiang Z.-Q.; Zhao S.-Q.; Su Y.-X.; Liu N.; Wu Z.-Q. Macromolecules 2018, 51, 737.
[25]
Wang Q.; Chu B.-F.; Chu J.-H.; Liu N.; Wu Z.-Q. ACS Macro Lett. 2018, 7, 127.
[26]
Xu L.; Yang L.; Guo Z.-X.; Liu N.; Zhu Y. -Y.; Li Z. B.; Wu Z.-Q. Macromolecules 2019, 52, 5698.
[27]
Zhao S.-Q.; Hu G.-J.; Xu X.-H.; Kang S.-M.; Liu N.; Wu Z.-Q. ACS Macro Lett. 2018, 7, 1073.
[28]
Chen J.-L.; Yang L.; Wang Q.; Jiang Z.-Q.; Liu N.; Yin J.; Ding Y.-S.; Wu Z.-Q. Macromolecules 2015, 48, 7737.
[29]
Wang Q.; Xiao J.; Su Y.-H.; Huang J.-W.; Li J.-H.; Qiu L.-G.; Zhan M.-X.; He X.; Yuan W.-Z.; Li Y. Polym. Chem. 2021, 12, 2132.
[30]
Huang J.; Shen L.; Zou H.; Liu N. Chin. J. Polym. Sci. 2018, 36, 799.
[31]
Imai T.; Hayakawa K.; Satoh T.; Kaga H.; Kakuchi T. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3443.
[32]
Kanbayashi N.; Tokuhara S.; Sekine T.; Kataoka Y.; Okamura T.; Onitsuka K. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 496.
[33]
Xu L.; Xu X.-H.; Liu N.; Zou H.; Wu Z.-Q. Macromolecules 2018, 51, 7546.
[34]
(a) Yashima E.; Maeda K.; Okamoto Y. Nature (London) 1999, 399, 449.
[34]
(b) Maeda K.; Morino K.; Okamoto Y.; Sato T.; Yashima E. J. Am. Chem. Soc. 2004, 126, 4329.
[35]
Maeda K.; Muto M.; Sato T.; Yashima E. Macromolecules 2011, 44, 8343.
[36]
Maeda K.; Nozaki M.; Hashimoto K.; Shimomura K.; Hirose D.; Nishimura T.; Watanabe G.; Yashima E. J. Am. Chem. Soc. 2020, 142, 7668.
[37]
Kakuchi R.; Sakai R.; Otsuka I.; Kaga H.; Kakuchi T. Macromolecules 2005, 38, 9441.
[38]
(a) Aoki T.; Kaneko T.; Maruyama N.; Sumi A.; Takahashi M.; Sato T.; Teraguchi M. J. Am. Chem. Soc. 2003, 125, 6346.
[38]
(b) Teraguchi M.; Tanioka D.; Kaneko T.; Aoki T. ACS Macro Lett. 2012, 1, 1258.
[39]
Wang S.; Chen J.-X.; Feng X.-Y.; Shi G.; Zhang J.; Wan X.-H. Macromolecules 2017, 50, 4610.
[40]
(a) Ishidate R.; Markvoort A. J.; Maeda K.; Yashima E. J. Am. Chem. Soc. 2019, 141, 7605.
[40]
(b) Ikai T.; Ishidate R.; Inoue K.; Kaygisiz K.; Maeda K.; Yashima E. Macromolecules 2020, 53, 973.
[40]
(c) Ikai T.; Takeda S.; Yashima E. ACS Macro Lett. 2022, 11, 525.
[41]
(a) Li B.-S.; Lam J. W. Y.; Yu Z.-Q.; Tang B.-Z. Langmuir 2012, 28, 5770.
[41]
(b) Jim C. K. W.; Lam J. W. Y.; Leung C. W. T.; Qin A.-J.; Mahtab F.; Tang B.-Z. Macromolecules 2011, 44, 2427.
[42]
(a) Xia Q.; Meng L.-M.; He T. C.; Huang G. X.; Li B. S.; Tang B. Z. ACS Nano 2021, 15, 4956.
[42]
(b) Song F.; Cheng Y.; Liu Q.; Qiu Z.; Lam J. W. Y.; Lin L.; Yang F.; Tang B. Z. Mater. Chem. Front. 2019, 3, 1768.
[42]
(c) Zhao D.; He H.; Gu X.; Guo L.; Wong K. S.; Lam J. W. Y.; Tang B.-Z. Adv. Opt. Mater. 2016, 4, 534.
[43]
(a) Wang S.; Hu D.-P.; Guan X.-Y.; Cai S.-L.; Shi G.; Shuai Z.-G.; Zhang J.; Peng Q.; Wan X.-H. Angew. Chem., Int. Ed. 2021, 60, 21918.
[43]
(b) Wang S.; Xie S.-Y.; Zeng H.; Du H.-X.; Zhang J.; Wan X.-H. Angew. Chem., Int. Ed. 2022, 61, e202202268.
[43]
(c) Chen J.-X.; Cai S.-L.; Wang R.; Wang S.; Zhang J.; Wan X.-H. Macromolecules 2020, 53, 1638.
[43]
(d) Cai S.-L.; Chen J.-X.; Wang S.; Zhang J.; Wan X.-H. Angew. Chem., Int. Ed. 2021, 60, 9686.
[44]
(a) Rodríguez R.; Quin?oa E.; Riguera R.; Freire F. J. Am. Chem. Soc. 2016, 138, 9620.
[44]
(b) Cobos K.; Rodríguez R.; Domarco O.; Fernandez B.; Quinoa E.; Riguera R.; Freire F. Macromolecules 2020, 53, 3182.
[45]
(a) Jia H.-G.; Teraguchi M.; Aoki T.; Abe Y.; Kaneko T.; Hadano S.; Namikoshi T.; Marwanta E. Macromolecules 2009, 42, 17.
[45]
(b) Teraguchi M.; Tanioka D.; Kaneko T.; Aoki T. ACS Macro Lett. 2012, 1, 1258.
[46]
Zhang Y.-J.; Kang L.; Huang H.-J.; Deng J.-P. ACS Appl. Mater. Interfaces 2020, 12, 6319.
[47]
Huang H.-J.; Deng J.-P.; Shi Y. Macromolecules 2016, 49, 2948.
[48]
(a) Matyjaszewski K. J. Inorg. Organomet. Polym. 1992, 2, 5.
[48]
(b) Fujiki M. J. Am. Chem. Soc. 1994, 116, 6017.
[48]
(c) Frey H.; Moeller M.; Matyjaszewski K. Macromolecules 1994, 27,1814.
[48]
(d) Fujiki M.; Koe J. R.; Terao K.; Sato T.; Teramoto A.; Watanabe J. Polym. J. 2003, 35, 297.
[49]
Zhao Y.; Chen H.-L.; Yin L.; Cheng X.-X.; Zhang W.; Zhu X.-L. Polym. Chem. 2018, 9, 2295.
[50]
(a) Cheng X.-X.; Miao T.-F.; Yin L.; Ji Y.-J.; Li Y.-Y.; Zhang Z.-B.; Zhang W.; Zhu X.-L. Angew. Chem., Int. Ed. 2020, 59, 9669.
[50]
(b) Cheng X.-X.; Miao T.-F.; Ma Y.-F.; Zhu X.-Y.; Zhang W.; Zhu X.-L. Angew. Chem., Int. Ed. 2021, 60, 24430.
[50]
(c) Gan Y.-J.; Dai H.-B.; Ma Y.-F.; Cheng X.-X.; Wang Z.; Zhang W. Macromolecules 2022, 55, 8556.
[51]
Shen J.; Okamoto Y. Chem. Rev. 2016, 116, 1094.
[52]
Kan K.; Fujiki M.; Akashi M. ACS Macro Lett. 2016, 5, 1014.
[53]
Ho R M.; Chen C.-K.; Chiang Y.-W. Adv. Mater. 2010, 18, 2355.
[54]
Liang J.-Y.; Yang B.-W.; Deng J.-P. Chem. Eng. J. 2018, 344, 262.
[55]
O‘Leary L. E. R.; Fallas J. A.; Bakota E. L. Nat. Chem. 2011, 3, 821.
文章导航

/