手性螺旋聚合物的合成和结构控制
收稿日期: 2023-05-05
修回日期: 2023-06-30
网络出版日期: 2023-08-22
基金资助
安徽省高校自然科学研究(KJ2021A0942); 国家自然科学基金(92256201); 国家自然科学基金(22071041); 国家自然科学基金(21871073)
Synthesis and Structure Control of Chiral Helical Polymers
Received date: 2023-05-05
Revised date: 2023-06-30
Online published: 2023-08-22
Supported by
Natural Science Research Project of Universities in Anhui Province(KJ2021A0942); National Natural Science Foundation of China(92256201); National Natural Science Foundation of China(22071041); National Natural Science Foundation of China(21871073)
王倩 , 刘雨奇 , 吴宗铨 . 手性螺旋聚合物的合成和结构控制[J]. 有机化学, 2023 , 43(12) : 4141 -4146 . DOI: 10.6023/cjoc202305003
Many researches have been done on artificial chiral helical polymers whose helical senses are excess because of their wide applications such as enantiomeric separation, photoelectric functional materials, and so on. Synthetic optically active helical polymers can be generally divided into static helical polymers and dynamic helical polymers on the basis of whether the helix inversion barriers are high or low. Among the three different kinds of helical polymers, polyisocyanates, polyisocyanides and polyacetylenes were mainly discussed in this review. And this review mainly focuses on the methods such as polymerization of chiral monomer, helix-sense-selective polymerization, chirality induction, chiral amplification, cis-cisoid to cis-transoid, polymerization-induced chiral self-assembly etc.
| [1] | Watso J. D.; Crick H. C. Nature 1953, 171, 737. |
| [2] | Shen J.; Okamoto Y. Chem. Rev. 2016, 116, 1094. |
| [3] | (a) Bak I. G.; Chae C.; Lee J.-S. Macromolecules 2022, 55, 1923. |
| [3] | (b) Song L.-F.; Zhou Y.-Y.; Gao T.; Yan P.-F.; Li H.-F. Acta Chim. Sinica 2021, 79, 1042. (in Chinese) |
| [3] | (宋龙飞, 周妍妍, 高婷, 闫鹏飞, 李洪峰, 化学学报, 2021, 79, 1042.) |
| [3] | (c) Zhai X.-Y.; Wang X.-Q.; Wu B.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21. |
| [4] | (a) Liu J.-Z.; Lam J. W. Y.; Tang B.-Z. Chem. Rev. 2009, 109, 5799. |
| [4] | (b) Nakano T.; Okamoto Y. Chem. Rev. 2001, 101, 4013. |
| [4] | (c) Cornelissen J. J. L. M.; Rowan A. E.; Nolte R. J. M.; Sommerdijk C N. A. J. M. Chem. Rev. 2001, 101, 4039. |
| [5] | Hanes C. S. New Phytol. 1937, 36, 189. |
| [6] | Pauling L.; Corey R. B.; Branson H. R. Proc. Natl. Acad. Sci. U. S. A. 1951, 378, 205. |
| [7] | Watson J. D.; Crick F. H. C. Nature 1953, 171, 737. |
| [8] | Natta G.; Pino P.; Corradini P.; Danusso F.; Mantica E.; Nazzanti G.; Moraglio G. J. Am. Chem. Soc. 1955, 77, 1708. |
| [9] | (a) Pino P.; Lorenzi G. P. J. Am. Chem. Soc. 1960, 82, 4745. |
| [10] | (a) Rowan A. E.; Nolte R. J. M. Angew. Chem., Int. Ed. 1998, 37, 63. |
| [10] | (b) Cornelissen J. J. L. M.; Rowan A. E.; Nolte R. J. M.; Sommerdijk N. A. J. M. Chem. Rev. 2001, 101, 4039. |
| [10] | (c) Okamoto Y.; Nakano T. Chem. Rev. 1994, 94, 349. |
| [10] | (d) Nakano T.; Okamoto Y. Chem. Rev. 2001, 101, 4013. |
| [10] | (e) Green M. M.; Peterson N. C.; Sato T.; Teramoto A.; Cook R.; Lifson S. Science 1995, 268, 1860. |
| [10] | (f) Fujiki M. Macromol. Rapid Commun. 2001, 22, 539. |
| [10] | (g) Wulff G. Angew. Chem., nt. Ed. Engl. 1989, 28, 21. |
| [10] | (h) Pu L. Acta Polym. 1997, 48, 116. |
| [10] | (i) Maeda K.; Yashima E. Top. Curr. Chem. 2006, 265, 47. |
| [10] | (j) Nakano T.; Okamoto Y. Chem. Rev. 2001, 101, 4013. |
| [11] | Okamoto Y.; Suzuki K.; Ohta K.; Hatada K.; Yuki H. J. Am. Chem. Soc. 1979, 101, 4763. |
| [12] | Green M. M.; Andreola C.; Mu?oz B.; Reidy M. P. J. Am. Chem. Soc. 1988, 110, 4063. |
| [13] | (a) Goodman M.; Chen S.-C. Macromolecules 1970, 3, 398. |
| [13] | (b) Goodman M.; Chen S.-C. Macromolecules 1971, 4, 625. |
| [14] | (a) Green M. M.; Gross R. A.; Crosby III C.; Schilling F. C. Macromolecules 1987, 20, 992. |
| [14] | (b) Hino K.; Maeda K.; Okamoto Y. J. Phys. Org. Chem. 2000, 13, 361. |
| [14] | (c) Shin Y.-D.; Ahn J.-H.; Lee J.-S. Macromol. Rapid Commun. 2001, 22, 1041. |
| [15] | (a) Green M. M.; Andreola C.; Peterson N. C. J. Am. Chem. Soc. 1989, 111, 8850. |
| [15] | (b) Gu H.; Nakamura H.; Sato T.; Teramoto A.; Green M. M.; Andreola C.; Peterson N. C.; Lifson S. Macromolecules 1995, 28, 1016. |
| [15] | (c) Green M. M.; Garetz B. A.; Munoz B.; Chang H. P.; Hoke S.; Cooks R. G. J. Am. Chem. Soc. 1995, 117, 4181. |
| [16] | Maeda K.; Okamoto Y. Polym. J. 1998, 30, 100. |
| [17] | (a) Chae C.-G.; Bak I. G.; Lee J.-S. Macromolecules 2018, 51, 6771. |
| [17] | (b) Shan P. N.; Chae C.-G.; Min J.; Shimada R.; Satoh T.; Kakuchi T.; Lee J.-S. Macromolecules 2014, 47, 2796. |
| [18] | Millich F. Adv. Polym. Sci. 1975, 19, 117. |
| [19] | (a) Drenth W.; Nolte R. J. M. Acc. Chem. Res. 1979, 12, 30. |
| [19] | (b) Kamer P. C. J.; Nolte R. J. M.; Drenth W. J. Am. Chem. Soc. 1988, 110, 6818. |
| [20] | Wada Y.; Shinohara K.; Asakawa H.; Matsui S.; Taima T.; Ikai T. J. Am. Chem. Soc. 2019, 141, 13995. |
| [21] | Wu Z.-Q.; Nagai K.; Banno M.; Okoshi K.; Onitsuka K.; Yashima E. J. Am. Chem. Soc. 2009, 131, 6708. |
| [22] | Xue Y.-X.; Zhu Y. -Y.; Gao L.-M.; He X.-Y.; Liu N.; Zhang W.-Y.; Yin J.; Ding Y.-S.; Zhou H.-P.; Wu Z.-Q. J. Am. Chem. Soc. 2014, 136, 4706. |
| [23] | Yang L.; Tang Y.; Liu N.; Liu C.-H.; Ding Y.-S.; Wu Z.-Q. Macromolecules 2016, 49, 7692. |
| [24] | Jiang Z.-Q.; Zhao S.-Q.; Su Y.-X.; Liu N.; Wu Z.-Q. Macromolecules 2018, 51, 737. |
| [25] | Wang Q.; Chu B.-F.; Chu J.-H.; Liu N.; Wu Z.-Q. ACS Macro Lett. 2018, 7, 127. |
| [26] | Xu L.; Yang L.; Guo Z.-X.; Liu N.; Zhu Y. -Y.; Li Z. B.; Wu Z.-Q. Macromolecules 2019, 52, 5698. |
| [27] | Zhao S.-Q.; Hu G.-J.; Xu X.-H.; Kang S.-M.; Liu N.; Wu Z.-Q. ACS Macro Lett. 2018, 7, 1073. |
| [28] | Chen J.-L.; Yang L.; Wang Q.; Jiang Z.-Q.; Liu N.; Yin J.; Ding Y.-S.; Wu Z.-Q. Macromolecules 2015, 48, 7737. |
| [29] | Wang Q.; Xiao J.; Su Y.-H.; Huang J.-W.; Li J.-H.; Qiu L.-G.; Zhan M.-X.; He X.; Yuan W.-Z.; Li Y. Polym. Chem. 2021, 12, 2132. |
| [30] | Huang J.; Shen L.; Zou H.; Liu N. Chin. J. Polym. Sci. 2018, 36, 799. |
| [31] | Imai T.; Hayakawa K.; Satoh T.; Kaga H.; Kakuchi T. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3443. |
| [32] | Kanbayashi N.; Tokuhara S.; Sekine T.; Kataoka Y.; Okamura T.; Onitsuka K. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 496. |
| [33] | Xu L.; Xu X.-H.; Liu N.; Zou H.; Wu Z.-Q. Macromolecules 2018, 51, 7546. |
| [34] | (a) Yashima E.; Maeda K.; Okamoto Y. Nature (London) 1999, 399, 449. |
| [34] | (b) Maeda K.; Morino K.; Okamoto Y.; Sato T.; Yashima E. J. Am. Chem. Soc. 2004, 126, 4329. |
| [35] | Maeda K.; Muto M.; Sato T.; Yashima E. Macromolecules 2011, 44, 8343. |
| [36] | Maeda K.; Nozaki M.; Hashimoto K.; Shimomura K.; Hirose D.; Nishimura T.; Watanabe G.; Yashima E. J. Am. Chem. Soc. 2020, 142, 7668. |
| [37] | Kakuchi R.; Sakai R.; Otsuka I.; Kaga H.; Kakuchi T. Macromolecules 2005, 38, 9441. |
| [38] | (a) Aoki T.; Kaneko T.; Maruyama N.; Sumi A.; Takahashi M.; Sato T.; Teraguchi M. J. Am. Chem. Soc. 2003, 125, 6346. |
| [38] | (b) Teraguchi M.; Tanioka D.; Kaneko T.; Aoki T. ACS Macro Lett. 2012, 1, 1258. |
| [39] | Wang S.; Chen J.-X.; Feng X.-Y.; Shi G.; Zhang J.; Wan X.-H. Macromolecules 2017, 50, 4610. |
| [40] | (a) Ishidate R.; Markvoort A. J.; Maeda K.; Yashima E. J. Am. Chem. Soc. 2019, 141, 7605. |
| [40] | (b) Ikai T.; Ishidate R.; Inoue K.; Kaygisiz K.; Maeda K.; Yashima E. Macromolecules 2020, 53, 973. |
| [40] | (c) Ikai T.; Takeda S.; Yashima E. ACS Macro Lett. 2022, 11, 525. |
| [41] | (a) Li B.-S.; Lam J. W. Y.; Yu Z.-Q.; Tang B.-Z. Langmuir 2012, 28, 5770. |
| [41] | (b) Jim C. K. W.; Lam J. W. Y.; Leung C. W. T.; Qin A.-J.; Mahtab F.; Tang B.-Z. Macromolecules 2011, 44, 2427. |
| [42] | (a) Xia Q.; Meng L.-M.; He T. C.; Huang G. X.; Li B. S.; Tang B. Z. ACS Nano 2021, 15, 4956. |
| [42] | (b) Song F.; Cheng Y.; Liu Q.; Qiu Z.; Lam J. W. Y.; Lin L.; Yang F.; Tang B. Z. Mater. Chem. Front. 2019, 3, 1768. |
| [42] | (c) Zhao D.; He H.; Gu X.; Guo L.; Wong K. S.; Lam J. W. Y.; Tang B.-Z. Adv. Opt. Mater. 2016, 4, 534. |
| [43] | (a) Wang S.; Hu D.-P.; Guan X.-Y.; Cai S.-L.; Shi G.; Shuai Z.-G.; Zhang J.; Peng Q.; Wan X.-H. Angew. Chem., Int. Ed. 2021, 60, 21918. |
| [43] | (b) Wang S.; Xie S.-Y.; Zeng H.; Du H.-X.; Zhang J.; Wan X.-H. Angew. Chem., Int. Ed. 2022, 61, e202202268. |
| [43] | (c) Chen J.-X.; Cai S.-L.; Wang R.; Wang S.; Zhang J.; Wan X.-H. Macromolecules 2020, 53, 1638. |
| [43] | (d) Cai S.-L.; Chen J.-X.; Wang S.; Zhang J.; Wan X.-H. Angew. Chem., Int. Ed. 2021, 60, 9686. |
| [44] | (a) Rodríguez R.; Quin?oa E.; Riguera R.; Freire F. J. Am. Chem. Soc. 2016, 138, 9620. |
| [44] | (b) Cobos K.; Rodríguez R.; Domarco O.; Fernandez B.; Quinoa E.; Riguera R.; Freire F. Macromolecules 2020, 53, 3182. |
| [45] | (a) Jia H.-G.; Teraguchi M.; Aoki T.; Abe Y.; Kaneko T.; Hadano S.; Namikoshi T.; Marwanta E. Macromolecules 2009, 42, 17. |
| [45] | (b) Teraguchi M.; Tanioka D.; Kaneko T.; Aoki T. ACS Macro Lett. 2012, 1, 1258. |
| [46] | Zhang Y.-J.; Kang L.; Huang H.-J.; Deng J.-P. ACS Appl. Mater. Interfaces 2020, 12, 6319. |
| [47] | Huang H.-J.; Deng J.-P.; Shi Y. Macromolecules 2016, 49, 2948. |
| [48] | (a) Matyjaszewski K. J. Inorg. Organomet. Polym. 1992, 2, 5. |
| [48] | (b) Fujiki M. J. Am. Chem. Soc. 1994, 116, 6017. |
| [48] | (c) Frey H.; Moeller M.; Matyjaszewski K. Macromolecules 1994, 27,1814. |
| [48] | (d) Fujiki M.; Koe J. R.; Terao K.; Sato T.; Teramoto A.; Watanabe J. Polym. J. 2003, 35, 297. |
| [49] | Zhao Y.; Chen H.-L.; Yin L.; Cheng X.-X.; Zhang W.; Zhu X.-L. Polym. Chem. 2018, 9, 2295. |
| [50] | (a) Cheng X.-X.; Miao T.-F.; Yin L.; Ji Y.-J.; Li Y.-Y.; Zhang Z.-B.; Zhang W.; Zhu X.-L. Angew. Chem., Int. Ed. 2020, 59, 9669. |
| [50] | (b) Cheng X.-X.; Miao T.-F.; Ma Y.-F.; Zhu X.-Y.; Zhang W.; Zhu X.-L. Angew. Chem., Int. Ed. 2021, 60, 24430. |
| [50] | (c) Gan Y.-J.; Dai H.-B.; Ma Y.-F.; Cheng X.-X.; Wang Z.; Zhang W. Macromolecules 2022, 55, 8556. |
| [51] | Shen J.; Okamoto Y. Chem. Rev. 2016, 116, 1094. |
| [52] | Kan K.; Fujiki M.; Akashi M. ACS Macro Lett. 2016, 5, 1014. |
| [53] | Ho R M.; Chen C.-K.; Chiang Y.-W. Adv. Mater. 2010, 18, 2355. |
| [54] | Liang J.-Y.; Yang B.-W.; Deng J.-P. Chem. Eng. J. 2018, 344, 262. |
| [55] | O‘Leary L. E. R.; Fallas J. A.; Bakota E. L. Nat. Chem. 2011, 3, 821. |
/
| 〈 |
|
〉 |