综述与进展

可见光促进高价碘(III)试剂参与反应的研究进展

  • 赵瑜 ,
  • 段玉荣 ,
  • 史时辉 ,
  • 白育斌 ,
  • 黄亮珠 ,
  • 杨晓军 ,
  • 张琰图 ,
  • 冯彬 ,
  • 张建波 ,
  • 张秋禹
展开
  • a 西北工业大学化学与化工学院 西安市功能有机多孔材料重点实验室 西安 710129
    b 延安大学化学与化工学院 陕西省化学反应工程重点实验室 陕西延安 716000
    c 百色学院化学与环境工程学院 广西百色 533000

收稿日期: 2023-05-17

  修回日期: 2023-07-30

  网络出版日期: 2023-08-22

基金资助

国家自然科学基金(22161047); 陕西省科技计划(2019JM-516); 延安大学博士科研启动基金(YDBK2018-30)

Recent Advances of Hypervalent Iodine(III) Reagents upon Visible Light Irradiation

  • Yu Zhao ,
  • Yurong Duan ,
  • Shihui Shi ,
  • Yubin Bai ,
  • Liangzhu Huang ,
  • Xiaojun Yang ,
  • Yantu Zhang ,
  • Bin Feng ,
  • Jianbo Zhang ,
  • Qiuyu Zhang
Expand
  • a Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129
    b College of Chemistry and Chemical Engineeringt, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000
    c College of Chemistry and Environment Engineering, Baise University, Baise, Guangxi 533000

Received date: 2023-05-17

  Revised date: 2023-07-30

  Online published: 2023-08-22

Supported by

National Natural Science Foundation of China(22161047); Science and Technology Plan Project of Shaanxi Province(2019JM-516); Research Fund for the Doctoral Program of Yan'an University(YDBK2018-30)

摘要

近几十年来, 高价碘试剂受到有机合成化学工作者的关注, 并被广泛应用于有机合成反应中. 相较于强氧化性的五价碘试剂, 三价的高价碘试剂呈现出弱氧化性, 更符合绿色、环境友好的特点. 在过去十几年, 可见光诱导光致氧化还原催化反应作为一种强劲的有机合成新方法, 实现了许多重要的化学转化. 同时, 一些三价的碘试剂由于结构稳定、易获得的特点, 也被广泛应用于可见光促进的光化学反应中. 特别是苯并碘氧杂戊环(酮)类的三价碘试剂, 由于其优良的化学反应活性, 可以作为氧化剂、自由基受体、自由基前体和共催化剂, 从而参与到光化学反应中. 另外, 二醋酸碘苯及其衍生物在光催化的反应中也可以经历类似的反应途径. 三价碘试剂表现出的弱氧化性和优良的亲电性主要归结于其结构中含有高度极化的I—X键, 容易发生断裂. 主要总结并讨论了从2016年以来三价碘试剂参与光催化反应的研究进展, 根据不同类型的三价碘试剂参与的光化学反应, 就其反应特点和机理过程进行详细的讨论和陈述; 同时, 针对三价碘试剂将来的应用前景也进行了讨论.

本文引用格式

赵瑜 , 段玉荣 , 史时辉 , 白育斌 , 黄亮珠 , 杨晓军 , 张琰图 , 冯彬 , 张建波 , 张秋禹 . 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023 , 43(12) : 4106 -4140 . DOI: 10.6023/cjoc202305022

Abstract

Hypervalent iodine reagents have attracted much attention from organic synthetic chemists. Compared to the strong oxidizing iodine(V) reagents, iodine(III) reagents show a weaker oxidizing ability, which could meet green and environmentally-friendly properties. Over the past decade, visible-light-induced photoredox catalysis has merged as a powerful tool in organic synthetic methodology, and a rapid development was witnessed. It is worth noting that some iodine(III) reagents which are stable and easily available, have been widely utilized in visible light photocatalytic reactions. Particularly, benziodoxol(on)e reagents, due to their excellent activation properties, which can serve as oxidant, radical acceptor, radical precursor and co-catalyst in photocatalytic reactions, allow for many significant chemical transformations. Additionally, phenyliodine(III) diacetate and its derivatives can proceed similar pathway in photocatalytic reactions. These issues attribute to the highly polarized I—X bond of iodine reagents, leads to their oxidizing ability and superior electrophilicity. Herein, some significant advances since in 2016 are summaried and discussed in terms of chemical transformations and mechanisms of different iodine(III) reagents. In addition, the application prospects in the future are also discussed.

参考文献

[1]
Recent advances for hypervalent iodine reagents: a Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
[1]
(b) Dohi T.; Kita Y. Chem. Commun. 2009, 2073.
[1]
(c) Merritt E. A.; Olofsson B. Angew. Chem., Int. Ed. 2009, 48, 9052.
[1]
(d) Brand J. P.; Gonzalez D. F.; Nicolai S.; Waser J. Chem. Commun. 2011, 47, 102.
[1]
(e) Brown M.; Farid U.; Wirth T. Synlett 2013, 24, 424.
[1]
(f) Zheng Z.; Zhang-Negrerie D.; Du Y.; Zhao K. Sci. China Chem. 2013, 57, 189.
[1]
(g) Singh F. V.; Wirth T. Chem. Asian J. 2014, 9, 950.
[1]
(h) Yoshimura A.; Zhdankin V. V. Chem. Rev. 2016, 116, 3328.
[1]
(i) Li Y.; Hari P.; Vita M. V.; Waser J. Angew. Chem., Int. Ed. 2016, 55, 4436.
[1]
(j) Wang L.; Liu J. Eur. J. Org. Chem. 2016, 2016, 1813.
[1]
(k) Wang X.; Studer A. Acc. Chem. Res. 2017, 50, 1712.
[1]
(l) Jia K.; Chen Y. PATAI'S Chemistry of Functional Groups, Hoboken, New Jersey, John Wiley & Sons, Ltd, 2018, pp. 1-42.
[1]
(m) Vaillant F. L.; Waser J. Chem. Sci. 2019, 10, 8909.
[1]
(n) Zu B.; Ke J.; Guo Y.; He C. Chin. J. Chem. 2021, 39, 627.
[2]
Recent advances for photoredox catalysis: a Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[2]
(b) Romero N. A.; Nicewicz D. A. Chem. Rev. 2016, 116, 10075.
[2]
(c) Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898.
[2]
(d) Qiao B.; Jiang Z. ChemPhotoChem 2018, 2, 703
[2]
(e) Marzo L.; Pagire S. K.; Reiser O.; K?nig B. Angew. Chem., Int. Ed. 2018, 57, 10034.
[2]
(f) Buzzetti L.; Crisenza G. E. M.; Melchiorre P. Angew. Chem., Int. Ed. 2019, 58, 3730.
[2]
(g) Lu F.-D.; Chen J.; Jiang X.; Chen J.-R.; Lu L.-Q.; Xiao W.-J. Chem. Soc. Rev. 2021, 50, 12808.
[2]
(h) Yu X.-Y.; Chen J.-R.; Xiao W.-J. Chem. Rev. 2021, 121, 506.
[2]
(i) Kim S.; Lee Y.; Cho E. J. J. Org. Chem. 2023, 88, 6382.
[3]
Yang J.-D.; Li M.; Xue X.-S. Chin. J. Chem. 2019, 37, 359.
[4]
(a) Courant T.; Masson G. J. Org. Chem. 2016, 81, 6945.
[4]
(b) Reiser O. Acc. Chem. Res. 2016, 49, 1990.
[5]
Mao L. L.; Cong H. ChemSusChem 2017, 10, 4461.
[6]
(a) Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320.
[6]
(b) Fujiwara T.; O’Hagan D. J. Fluorine Chem. 2014, 167, 16.
[7]
Wu S.; Li J.; He R.; Jia K.; Chen Y. Org. Lett. 2021, 23, 9204.
[8]
Yang B.; Xu X. H.; Qing F. L. Org. Lett. 2016, 18, 5956.
[9]
Li G. X.; Morales-Rivera C. A.; Wang Y.; Gao F.; He G.; Liu P.; Chen G. Chem. Sci. 2016, 7, 6407.
[10]
Dai J.-J.; Zhang W.-M.; Shu Y.-J.; Sun Y.-Y.; Xu J.; Feng Y.-S.; Xu H.-J. Chem. Commun. 2016, 52, 6793.
[11]
Zhang W. M.; Dai J. J.; Xu J.; Xu H. J. J. Org. Chem. 2017, 82, 2059.
[12]
He X. K.; Lu J.; Zhang A. J.; Zhang Q. Q.; Xu G. Y.; Xuan J. Org. Lett. 2020, 22, 5984.
[13]
Ji W.; Tan H.; Wang M.; Li P.; Wang L. Chem. Commun. 2016, 52, 1462.
[14]
Yang S.; Tan H.; Ji W.; Zhang X.; Li P.; Wang L. Adv. Synth. Catal. 2017, 359, 443.
[15]
Zhang J.-J.; Cheng Y.-B.; Duan X.-H. Chin. J. Chem. 2017, 35, 311.
[16]
Liu M.; Huang H.; Chen Y. Chin. J. Chem. 2018, 36, 1209.
[17]
Pawar G. G.; Robert F.; Grau E.; Cramail H.; Landais Y. Chem. Commun. 2018, 54, 9337.
[18]
Wang L.; Wang H.; Wang Y.; Shen M.; Li S. Tetrahedron Lett. 2020, 61, 151962.
[19]
Ito E.; Fukushima T.; Kawakami T.; Murakami K.; Itami K. Chem 2017, 2, 383.
[20]
(a) Le Vaillant F.; Waser J. Chem. Sci. 2019, 10, 8909.
[20]
(b) Amos S. G. E.; Waser J. Chimia 2022, 76, 312.
[21]
(a) Zhou Q. Q.; Guo W.; Ding W.; Wu X.; Chen X.; Lu L. Q.; Xiao W. J. Angew. Chem., Int. Ed. 2015, 54, 11196.
[21]
(b) Le Vaillant F.; Courant T.; Waser J. Angew. Chem., Int. Ed. 2015, 54, 11200.
[21]
(c) Yang C.; Yang J. D.; Li Y. H.; Li X.; Cheng J. P. J. Org. Chem. 2016, 81, 12357.
[22]
(a) Garreau M.; Le Vaillant F.; Waser J. Angew. Chem., Int. Ed. 2019, 58, 8182.
[22]
(b) Tessier R.; Ceballos J.; Guidotti N.; Simonet-Davin R.; Fierz B.; Waser J. Chem 2019, 5, 1.
[23]
Matsumoto K.; Nakajima M.; Nemoto T. J. Org. Chem. 2020, 85, 11802.
[24]
Voutyritsa E.; Garreau M.; Kokotou M. G.; Triandafillidi I.; Waser J.; Kokotos C. G. Chem. Eur. J. 2020, 26, 14453.
[25]
Mukherjee S.; Garza-Sanchez R. A.; Tlahuext-Aca A.; Glorius F. Angew. Chem., Int. Ed. 2017, 56, 14723.
[26]
Davies J.; Sheikh N. S.; Leonori D. Angew. Chem., Int. Ed. 2017, 56, 13361.
[27]
Morcillo S. P.; Dauncey E. M.; Kim J. H.; Douglas J. J.; Sheikh N. S.; Leonori D. Angew. Chem., Int. Ed. 2018, 57, 12945.
[28]
Jiang H.; Studer A. Chem. Eur. J. 2019, 25, 516.
[29]
Le Vaillant F.; Garreau M.; Nicolai S.; Gryn'ova G.; Corminboeuf C.; Waser J. Chem. Sci. 2018, 9, 5883.
[30]
Amos S. G. E.; Cavalli D.; Le Vaillant F.; Waser J. Angew. Chem., Int. Ed. 2021, 60, 23827.
[31]
Jia K.; Zhang F.; Huang H.; Chen Y. J. Am. Chem. Soc. 2016, 138, 1514.
[32]
Jia K.; Pan Y.; Chen Y. Angew. Chem., Int. Ed. 2017, 56, 2478.
[33]
Liu Z.; Wu S.; Chen Y. ACS Catal. 2021, 11, 10565.
[34]
Wang D.; Zhang L.; Luo S. Org. Lett. 2017, 19, 4924.
[35]
(a) Zhou Q. Q.; Liu D.; Xiao W. J.; Lu L. Q. Acta Chim. Sinica 2017, 75, 110. (in Chinese)
[35]
(周泉泉, 刘丹, 肖文精, 陆良秋, 化学学报, 2017, 75, 110.)
[35]
(b) Le Vaillant F.; Wodrich M. D.; Waser J. Chem. Sci. 2017, 8, 1790.
[36]
(a) Wang Y.; Li G. X.; Yang G.; He G.; Chen G. Chem. Sci. 2016, 7, 2679.
[36]
(b) Rabet P. T.; Fumagalli G.; Boyd S.; Greaney M. F. Org. Lett. 2016, 18, 1646.
[37]
(a) Fumagalli G.; Rabet P. T. G.; Boyd S.; Greaney M. F. Angew. Chem., Int. Ed. 2015, 54, 11481.
[37]
(b) Alazet S.; Preindl J.; Simonet-Davin R.; Nicolai S.; Nanchen A.; Meyer T.; Waser J. J. Org. Chem. 2018, 83, 12334.
[38]
Wang H.; Zhang D.; Bolm C. Chem. Eur. J. 2018, 24, 14942.
[39]
Calvo R.; Le Tellier A.; Nauser T.; Rombach D.; Nater D.; Katayev D. Angew. Chem., Int. Ed. 2020, 59, 17162.
[40]
Wappes E. A.; Fosu S. C.; Chopko T. C.; Nagib D. A. Angew. Chem., Int. Ed. 2016, 55, 9974.
[41]
Wappes E. A.; Nakafuku K. M.; Nagib D. A. J. Am. Chem. Soc. 2017, 139, 10204.
[42]
Wang H.; Zhang D.; Bolm C. Angew. Chem., Int. Ed. 2018, 57, 5863.
[43]
Wang C.; Tu Y.; Ma D.; Ait Tarint C.; Bolm C. Org. Lett. 2021, 23, 6891.
[44]
(a) Genovino J.; Lian Y.; Zhang Y.; Hope T. O.; Juneau A.; Gagne Y.; Ingle G.; Frenette M. Org. Lett. 2018, 20, 3229.
[44]
(b) Yang B.; Yu D.; Xu X.-H.; Qing F.-L. ACS Catal. 2018, 8, 2839.
[44]
(c) Han J.; Wang G.; Sun J.; Li H.; Duan G.; Li F.; Xia C. Catal. Commun. 2019, 118, 81.
[45]
Murugan A.; Babu V. N.; Polu A.; Sabarinathan N.; Bakthadoss M.; Sharada D. S. J. Org. Chem. 2019, 84, 7796.
[46]
Meyer C. F.; Hell S. M.; Misale A.; Trabanco A. A.; Gouverneur V. Angew. Chem., Int. Ed. 2019, 58, 8829.
[47]
Lu M.; Qin H.; Lin Z.; Huang M.; Weng W.; Cai S. Org. Lett. 2018, 20, 7611.
[48]
Lu M.; Zhang T.; Tan D.; Chen C.; Zhang Y.; Huang M.; Cai S. Adv. Synth. Catal. 2019, 361, 4237.
[49]
Zhang X. Y.; Ning C.; Long Y. J.; Wei Y.; Shi M. Org. Lett. 2020, 22, 5212.
[50]
Selvakumar S.; Sakamoto R.; Maruoka K. Chem. Eur. J. 2016, 22, 6552.
[51]
(a) Tang L.; Ouyang Y.; Sun K.; Yu B. RSC Adv. 2022, 12, 19736.
[51]
(b) Zhou X.; Zhang A.; Zhang Q.; Liu Q. A.; Xuan J. Chin. J. Org. Chem. 2022, 42. 2488.
[52]
Choudhuri K.; Pramanik M.; Mal P. Eur. J. Org. Chem. 2019, 2019, 4822.
[53]
Akita M.; Koike T.; Li Y. Synlett 2016, 27, 736.
[54]
Fearnley A. F.; An J.; Jackson M.; Lindovska P.; Denton R. M. Chem. Commun. 2016, 52, 4987.
[55]
Wang C.; Tu Y.; Ma D.; Bolm C. Angew. Chem., Int. Ed. 2020, 59, 14134.
文章导航

/