综述与进展

呜拉嗪及其衍生物的合成研究进展

  • 邵梓萌 ,
  • 王原辉 ,
  • 王海滢 ,
  • 崔培培 ,
  • 刘旭光
展开
  • 天津理工大学化学化工学院 天津市有机太阳能电池与光化学转换重点实验室 天津 300384

收稿日期: 2023-06-22

  修回日期: 2023-08-04

  网络出版日期: 2023-08-22

基金资助

国家自然科学基金(22071181); 天津市自然科学基金(22JCYBJC00260)

Recent Advance in the Synthesis of Ullazine and Its Derivatives

  • Zimeng Shao ,
  • Yuanhui Wang ,
  • Haiying Wang ,
  • Peipei Cui ,
  • Xuguang Liu
Expand
  • Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384

Received date: 2023-06-22

  Revised date: 2023-08-04

  Online published: 2023-08-22

Supported by

National Natural Science Foundation of China(22071181); Natural Science Foundation of Tianjin City(22JCYBJC00260)

摘要

稠环芳烃具有独特的电子性质和光学性质, 在有机光电材料领域应用广泛. 向稠环芳烃骨架中引入杂原子可改变其电子结构, 进而改变其物理、化学、光、电和磁等性质. 在众多的杂原子中, 氮原子是稠环芳烃中最常见的掺杂原子. 呜拉嗪是芘的等电子体, 又称吲哚并[6,5,4,3-ija]喹啉, 是一种新型氮杂稠环芳烃. 近年来, 呜拉嗪在染料敏化太阳能电池等领域表现出了潜在应用, 随后有关呜拉嗪的合成方法研究备受关注. 总结了近年来呜拉嗪及其衍生物的主要合成方法.

本文引用格式

邵梓萌 , 王原辉 , 王海滢 , 崔培培 , 刘旭光 . 呜拉嗪及其衍生物的合成研究进展[J]. 有机化学, 2023 , 43(11) : 3679 -3694 . DOI: 10.6023/cjoc202306020

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have been widely used in the field of organic electronics, due to their unique electronic and optical properties. Doping heteroatom is a popular way to modify the electronic structures and the properties of the PAHs. The resulting heteroaromatics exihit tunable physicochemical, optical, and electrochemical properties. Among the heteroatoms embedded in the scaffold of PAHs, nitrogen atom is the most common one. Ullazine, also known as indolizino[6,5,4,3-ija]quinoline, is isoelectronic with pyrene. In recent years, ullazine and its derivatives have drawn a lot attention due to its outstanding performance in dye-sensitized solar cells. The synthesis methods of ullazine developed in recent years are presented, and the overview of the current available synthetic methods of ullazine is summarized in detail.

参考文献

[1]
Cebrián, C. J. Mater. Chem. C 2018, 6(44), 11943.
[2]
Bunz, U. H. F. Acc. Chem. Res. 2015, 48(6), 1676.
[3]
Takase, M.; Enkelmann, V.; Sebastiani, D.; Baumgarten, M.; Müllen, K. Angew. Chem. Int. Ed. 2007, 46(29), 5524.
[4]
Balli, H.; Zeller, M. Helv. Chim. Acta. 1983, 66(7), 2135.
[5]
Zhou, J.; Yang, W. J.; Wang, B. J.; Ren, H. J. Angew. Chem. Int. Ed. 2012, 51(49), 12293.
[6]
Kanno, K. I.; Liu, Y. H.; Iesato, A.; Nakajima, K.; Takahashi, T. Org. Lett. 2005, 7(24), 5453.
[7]
Delcamp, J. H.; Yella, A.; Holcombe, T.W.; Nazeeruddin, M. K.; Gr?tzel, M. Angew. Chem. Int. Ed. 2013, 52(1), 376.
[8]
Nazeeruddin, M. K.; Drigo, N.; Sanghyun, P.; Huckaba, A.; Schouwink, P.; Tabet, N. Chem.-Eur. J. 2017, 23(68), 17209.
[9]
Zhang, Y. B.; Cheema, H.; McNamara, L.; Hunt, L. A.; Hammer, N.; Delcamp, J. H. Chem.-Eur. J. 2018, 24(22), 5939.
[10]
Wan, D. Y.; Li, X. Y.; Jiang, R. Y.; Feng, B. Y.; Lan, J. B.; Wang, R. L.; You, J. S. Org. Lett. 2016, 18(12), 2876.
[11]
Larock, R. C.; Doty, M. J.; Han, X.J. Tetrahedron Lett. 1998, 39(29), 5143.
[12]
Das, A.; Ghosh, I.; K?nig, B. Chem. Commun. 2016, 52(56), 8695.
[13]
Wang, D. P.; Liu, Y.; Wang, L. H.; Cheng, H.; Zhang, Y. M.; Gao, G. Chin. Chem. Lett. 2020, 32(4), 1407.
[14]
Berger, R.; Wagner, M.; Feng, X. L.; Müllen, K. Chem. Sci. 2015, 6(1), 436.
[15]
Berger, R.; Giannakopoulos, A.; Ravat, P.; Wagner, M.; Beljonne, D.; Feng, X. L.; Müllen, K. Angew. Chem. Int. Ed. 2014, 53(39), 10520.
[16]
Ito, S.; Tokimaru, Y.; Nozaki, K. Chem. Commun. 2015, 54(259), 7256.
[17]
Wang, W. F.; Hanindita, F.; Tanaka, Y.; Ochiai, K.; Sato, H.; Li, Y. X.; Yasuda, T.; Ito, S. Angew. Chem. Int. Ed. 2023, 62(8), e202218176.
[18]
Wang, W. F.; Hanindita, F.; Webster, R. D.; Ito, S. CCS Chem. 2022, 1.
[19]
Wang, W. F.; Hanindita, F.; Hamamoto, Y.; Li, Y. X.; Ito, S. Nat. Commun. 2022, 13(1), 1498.
[20]
Guo, X. Y.; Yuan, Z. Y.; Zhu, Y. P.; Li, Z. H.; Huang, R. K.; Xia, Z. M.; Zhang, W. X.; Li, Y.; Wang, J. B. Angew. Chem. Int. Ed. 2019, 58(47), 16966.
[21]
Miao, D.; Aumaitre, C.; Morin, J-F. J. Mater. Chem. C 2019, 7(10), 3015.
[22]
Miao, D.; Michele, V. D.; Gagnon, F.; Auma?tre, C.; Lucotti, A.; Zoppo, M. D.; Lirette, F.; Tommasini, M.; Morin, J-F. J. Am. Chem. Soc. 2021, 143(30), 11302.
[23]
Hager, J.; Kang, S.; Chmielewski, P. J.; Lis, T.; Kim, D.; St?pień, M. Org. Chem. Front. 2022, 9(12), 3179.
[24]
Hu, Y. C.; Jia, Y. Y.; Tuo, Z. K.; Zhou, W. Org. Lett. 2023, 25(11), 1845.
[25]
Hou, D. F.; Balli, H. Helv. Chim. Acta 1992, 75(8), 2608.
[26]
(a) Rubio-Presa, R.; Pedrosa, M. R.; Fernández-Rodríguez, M. A.; Arnáiz, F. J.; Sanz, R. Org. Lett. 2017, 19(19), 5470.
[26]
(b) Hernández-Ruiz, R.; Rubio-Presa, R.; Suárez-Pantiga, S.; Pedrosa, M. R.; Fernández-Rodríguez, M. A.; Tapia, M. J.; Sanz, R. Chem. Eur. J. 2021, 27(54), 13613.
[27]
Boldt, S.; Parpart, S.; Villinger, A.; Ehlers, P.; Langer P. Chem. Int. Ed. 2017, 56(16), 4575.
[28]
Pierrat, P.; Hesse, S.; Cebrián, C.; Gros, P. C. Org. Biomol. Chem. 2017, 15(40), 8568.
[29]
Parpart, S.; Boldt, S.; Ehlers, P.; Langer, P. Org. Lett. 2018, 20(1), 122.
[30]
Ibrahim, D.; Boulet, P.; Gros, P. C.; Pierrat, P. Eur. J. Org. Chem. 2021, 2021(22), 3331.
[31]
Ge, Q. M.; Li, B.; Wang, B. Q. Org. Biomol. Chem. 2016, 14(5), 1814.
[32]
Li, Q-Q.; Ochiai, K.; Lee, C-A.; Ito, S. Org. Lett. 2020, 22(15), 6132.
[33]
Ghorai, D.; Choudhury, J. ACS Catal. 2015, 5(4), 2692.
[34]
Li, Q-Q.; Hamamoto, Y.; Tan, C. C. H.; Sato, H.; Ito, S. Org. Chem. Front. 2022, 9(15), 4128.
[35]
Davies, D. L.; Ellul, C. E.; Macgregor, S. A.; McMullin, C. L.; Singh, K. J. Am. Chem. Soc. 2015, 137(30), 9659.
[36]
Villar, J. M.; Suárez, J.; Varela, J. A.; Saá, C. Org. Lett. 2017, 19(7), 1702.
[37]
Wang, T. B.; Zheng, Q. Z.; Wang, L. H.; Huang, Z. M.; Zhang, H. X.; Zhang, Y. M.; Zhang, C.; Gao, G. Chem. Commun. 2022, 58(4), 541.
[38]
(a) Mellerup, S. K.; Wang, S. N. Trends Chem. 2019, 1(1), 77.
[38]
(b) Sun, W. T.; Guo, J. X.; Fan, Z. M.; Yuan, L. Z.; Ye, K. Q.; Dou, C. D.; Wang, Y. Angew. Chem. Int. Ed. 2022, 61(40), e202209271.
[38]
(c) Zhao, R. Y.; Liu, J.; Wang, L. X. Acc. Chem. Res. 2020, 53(8), 1557.
[39]
(a) Xu, X. Y.; Liu, M. Y.; Li, C. L.; Liu, X. G. Chin. J. Org. Chem. 2023, 43(5), 1611.
[39]
(b) Wang, J-Y.; Pei, J. Chin. Chem. Lett. 2016, 27(8), 1139.
[39]
(c) Campbell, P. G.; Marwitz, A. J. V.; Liu, S-Y. Angew. Chem. Int. Ed. 2012, 51(18), 6074.
[40]
Li, C. L.; Liu, Y. M.; Sun, Z.; Zhang, J. Y.; Liu, M. Y.; Zhang, C.; Zhang, Q.; Wang, H. J.; Liu, X. G. Org. Lett. 2018, 20(10), 2806.
[41]
Guo, Y. K.; Zhang, L.; Li, C. L.; Jin, M. J.; Zhang, Y. L.; Ye, J. C.; Chen, Y.; Wu, X. M.; Liu, X. G. J. Org. Chem. 2021, 86(18), 12507.
文章导航

/