可见光诱导有机膦促进脱氧官能化反应研究进展
收稿日期: 2023-05-11
修回日期: 2023-07-06
网络出版日期: 2023-08-30
基金资助
国家自然科学基金(21864013); 国家自然科学基金(22263005); 江西省自然科学基金(20212BCJL23057); 江西省自然科学基金(20224ACB203006); 江西省自然科学基金(20232BAB203001); 江西省博士后基金(2019KY40)
Recent Advances in Visible-Light-Induced Organic Phosphine- Promoted Deoxygenative Functionalization Reactions
Received date: 2023-05-11
Revised date: 2023-07-06
Online published: 2023-08-30
Supported by
National Natural Science Foundation of China(21864013); National Natural Science Foundation of China(22263005); Natural Science Foundation of Jiangxi Province(20212BCJL23057); Natural Science Foundation of Jiangxi Province(20224ACB203006); Natural Science Foundation of Jiangxi Province(20232BAB203001); Postdoctoral Foundation of Jiangxi Province(2019KY40)
汤娟 , 胡家榆 , 祝志强 , 蒲守智 . 可见光诱导有机膦促进脱氧官能化反应研究进展[J]. 有机化学, 2023 , 43(12) : 4036 -4056 . DOI: 10.6023/cjoc202305012
Organic phosphine-promoted organic synthesis reactions have developed rapidly in recent years. Triphenylphos- phine and their derivatives are the most important class of organic phosphine compounds, which can not only serve as ligands in organic synthesis reactions, but also serve as deoxygenative promoters in a large number of reactions. In recent years, visible-light-induced deoxygenative coupling reactions have aroused considerable attention. This type of reaction uses organic phosphines to promote single electron transfer to form P—O intermediates with oxygen-containing organic molecules under visible-light, followed by deoxidation to obtain highly active free radical species, and then deoxygenative coupling to afford the desired products. Herein, the recent research progress in photoredox-induced organic phosphine-promoted deoxygenative functionalization reactions is summarized.
Key words: visible-light; organic phosphine; deoxygenation; free radical; functionalization
| [1] | (a) Westheimer F. H. Science 1987, 235, 1173. |
| [1] | (b) Petkowski J. J.; Bains W.; Seager S. Molecules 2019, 24, 866. |
| [2] | (a) Ardito F.; Giuliani M.; Perrone D.; Troiano G.; Lo Muzio L. Int. J. Mol. Med. 2017, 40, 271. |
| [2] | (b) Sun Z.; Xiao L.; Chen Y.; Wang J.; Zeng F.; Zhang H.; Zhang J.; Yang K.; Hu Y. J. ACS Med. Chem. Lett. 2023, 14, 473. |
| [3] | Clearfield A.; Demadis K. D. Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, 2011, pp. 223-227. |
| [4] | (a) Wang T.; Han X.; Zhong F.; Yao W.; Lu Y. Acc. Chem. Res. 2016, 49, 1369. |
| [4] | (b) Ni H.; Chan W.-L.; Lu Y. Chem. Rev. 2018, 118, 9344. |
| [4] | (c) Clevenger A. L.; Stolley R. M.; Aderibigbe J.; Louie J. Chem. Rev. 2020, 120, 6124. |
| [5] | (a) Wang M.; Wang C.; Huo Y.; Dang X.; Xue H.; Liu L.; Chai H.; Xie X.; Li Z.; Lu D.; Xu Z. Nat. Commun. 2021, 12, 6873. |
| [5] | (b) Lubaev A. E.; Rathnayake M. D.; Eze F.; Bayeh-Romero L. J. Am. Chem. Soc. 2022, 144, 13294. |
| [6] | Zhang X.; Yuan Q.; Zhang H.; Shen Z.-J.; Zhao L.; Yang C.; Guo L.; Xia W. Green. Chem. 2023, 25, 1435. |
| [7] | Shao X.; Zheng Y.; Ramadoss V.; Tian L.; Wang Y. Org. Biomol. Chem. 2020, 18, 5994. |
| [8] | Ye Z.-P.; Hu Y.-Z.; Xia P.-J.; Xiang H.-Y.; Chen K.; Yang H. Org. Chem. Front. 2021, 8, 273. |
| [9] | Hu X.-Q.; Hou Y.-X.; Liu Z.-K.; Gao Y. Org. Chem. Front. 2020, 7, 2319. |
| [10] | Zhang M.; Xie J.; Zhu C. Nat. Commun. 2018, 9, 3517. |
| [11] | Stache E. E.; Ertel A. B.; Rovis T.; Doyle A. G. ACS Catal. 2018, 8, 11134. |
| [12] | Martinez Alvarado J. I.; Ertel A. B.; Stegner A.; Stache E. E.; Doyle A. G. Org. Lett. 2019, 21, 9940. |
| [13] | Zhang M.; Yuan X.-A.; Zhu C.; Xie J. Angew. Chem., Int. Ed. 2019, 58, 312. |
| [14] | Ruzi R.; Ma J.; Yuan X.-A.; Wang W.; Wang S.; Zhang M.; Dai J.; Xie J.; Zhu C. Chem.-Eur. J. 2019, 25, 12724. |
| [15] | M?rz M.; Kohout M.; Nevesely T.; Chudoba J.; Pruka?a D.; Niziński S.; Sikorski M.; Burdziński G.; Cibulka R. Org. Biomol. Chem. 2018, 16, 6809. |
| [16] | Jiang H.; Mao G.; Wu H.; An Q.; Zuo M.; Guo W.; Xu C.; Sun Z.; Chu W. Green Chem. 2019, 21, 5368. |
| [17] | Ruzi R.; Liu K.; Zhu C.; Xie J. Nat. Commun. 2020, 11, 3312. |
| [18] | Zhang L.; Chen S.; He H.; Li W.; Zhu C.; Xie J. Chem. Commun. 2021, 57, 9064. |
| [19] | Ning Y.; Wang S.; Li M.; Han J.; Zhu C.; Xie J. Nat. Commun. 2021, 12, 4637. |
| [20] | Guo Y.-Q.; Wang R.; Song H.; Liu Y.; Wang Q. Org. Lett. 2020, 22, 709. |
| [21] | Nagaraju A.; Saiaede T.; Eghbarieh N.; Masarwa A. Chem.-Eur. J. 2023, 29, e202202646. |
| [22] | Yang W.-C.; Zhang M.-M.; Feng J.-G. Adv. Synth. Catal. 2020, 362, 4446. |
| [23] | Zhou C.; Shatskiy A.; Temerdashev A. Z.; K?rk?s M. D.; Dinér P. Commun. Chem. 2022, 5, 92. |
| [24] | Han J.-B.; Guo A.; Tang X.-Y. Chem.-Eur. J. 2019, 25, 2989. |
| [25] | de Pedro Beato E.; Mazzarella D.; Balletti M.; Melchiorre P. Chem. Sci. 2020, 11, 6312. |
| [26] | Nanjo T.; Matsugasako T.; Maruo Y.; Takemoto Y. Org. Lett. 2022, 24, 359. |
| [27] | Guo H. M.; Wu X. Nat. Commun. 2021, 12, 5365. |
| [28] | Guo H.-M.; He B.-Q.; Wu X. Org. Lett. 2022, 24, 3199. |
| [29] | Zhang W.; Ning S.; Li Y.; Wu X. Chem. Commun. 2022, 58, 12843. |
| [30] | Xia G.-D.; He Y.-Y.; Zhang J.; Liu Z.-K.; Gao Y.; Hu X.-Q. Chem. Commun. 2022, 58, 6733. |
| [31] | Tan C.-Y.; Kim M.; Park I.; Kim Y.; Hong S. Angew. Chem., Int. Ed. 2022, 61, e202213857. |
| [32] | Xie Z.-Z.; Zheng Y.; Yuan C.-P.; Guan J.-P.; Ye Z.-P.; Xiao J.-A.; Xiang H.-Y.; Chen K.; Chen X.-Q.; Yang H. Angew. Chem., Int. Ed. 2022, 61, e202211035. |
| [33] | Chheda P. R.; Simmons N.; Schuman D. P.; Shi Z. Org. Lett. 2022, 24, 9514. |
| [34] | (a) Zou D.; Wang W.; Hu Y.; Jia T. Org. Biomol. Chem. 2023, 21, 2254. |
| [34] | (b) Cui S.; Zeng L. Nat. Chem. 2023, 15, 597. |
| [35] | Xu Z.; Feng J.; Yao P.; Wu Q.; Zhu D. Green Chem. 2023, 25, 4667. |
| [36] | Ouyang L.; Miao R.; Yang Z.; Luo R. J. Catal. 2023, 418, 283. |
| [37] | (a) Irrgang T.; Kempe R. Chem. Rev. 2020, 120, 9583. |
| [37] | (b) Das K.; Sarkar K.; Maji B. ACS Catal. 2021, 11, 7060. |
| [38] | Lardy S. W.; Schmidt V. A. J. Am. Chem. Soc. 2018, 140, 12318. |
| [39] | Pan Z.; Chen B.; Fang J.; Liu T.; Fang J.; Ma Y. J. Org. Chem. 2022, 87, 14588. |
| [40] | Lardy S. W.; Luong K. C.; Schmidt V. A. Chem.-Eur. J. 2019, 25, 15267. |
| [41] | Xia P.-J.; Ye Z.-P.; Hu Y.-Z.; Song D.; Xiang H.-Y.; Chen X.-Q.; Yang H. Org. Lett. 2019, 21, 2658. |
| [42] | Han W.; Su J.; Mo J.-N.; Zhao J. Org. Lett. 2022, 24, 6247. |
| [43] | Carreno M. C. Chem. Rev. 1995, 95, 1717. |
| [44] | Surur A. S.; Schulig L.; Link A. Arch. Pharm. 2019, 352, 1800248. |
| [45] | García N.; García-García P.; Fernández-Rodríguez M. A.; García D.; Pedrosa M. R.; Arnáiz F. J.; Sanz R. Green Chem. 2013, 15, 999. |
| [46] | Zhang J.; Gao X.; Zhang C.; Zhang C.; Luan J.; Zhao D. Synth. Commun. 2010, 40, 1794. |
| [47] | (a) Iranpoor N.; Firouzabadi H.; Shaterian H. R. J. Org. Chem. 2002, 67, 2826. |
| [47] | (b) Jang Y.; Kim K. T.; Jeon H. B. J. Org. Chem. 2013, 78, 6328. |
| [47] | (c) Zhao X.; Zheng X.; Yang B.; Sheng J.; Lu K. Org. Biomol. Chem. 2018, 16, 1200. |
| [48] | Clarke A. K.; Parkin A.; Taylor R. J. K.; Unsworth W. P.; Rossi-Ashton J. A. ACS Catal. 2020, 10, 5814. |
/
| 〈 |
|
〉 |