二氧化碳硅氢化及相关转化的均相催化体系研究进展
收稿日期: 2023-06-11
修回日期: 2023-08-07
网络出版日期: 2023-08-30
基金资助
国家自然科学基金(22373118); 国家自然科学基金(21973113); 国家自然科学基金(22231002); 中央高校基本科研业务费专项资金资助项目
Recent Advances in Homogeneous Catalytic Systems for CO2 Hydrosilylation and Related Transformations
Received date: 2023-06-11
Revised date: 2023-08-07
Online published: 2023-08-30
Supported by
National Natural Science Foundation of China(22373118); National Natural Science Foundation of China(21973113); National Natural Science Foundation of China(22231002); Fundamental Research Funds for the Central Universities
利用二氧化碳作为C1原料进行硅氢化转化, 是可持续性催化合成的重要方法之一. 该方法能够将二氧化碳转化为不同氧化水平的高值化学品, 例如甲酸、甲醛、甲醇和甲烷等. 此外, 胺可在特定的催化体系中与二氧化碳和硅烷多组分反应, 实现基于二氧化碳硅氢化的N—H键酰基化和烷基化等转化. 近年来, 二氧化碳硅氢化领域的相关研究取得了显著的进展. 综述了近三年来应用于二氧化碳硅氢化的主要均相催化体系的研究进展, 介绍和总结催化剂的设计和相关催化性能, 包括贵金属催化、廉价过渡金属催化、稀土金属催化、主族金属催化和无金属催化等催化体系, 并讨论和展望了目前二氧化碳硅氢化的研究现状和潜在挑战.
苏沛锋 , 倪金煜 , 柯卓锋 . 二氧化碳硅氢化及相关转化的均相催化体系研究进展[J]. 有机化学, 2023 , 43(10) : 3526 -3543 . DOI: 10.6023/cjoc202306007
Hydrosilylation of carbon dioxide (CO2) is one of the most significant sustainable approaches for utilizing CO2 as a C1 feedstock. This approach enables the conversion of CO2 to value-added chemicals at various oxidation levels, such as formate, formaldehyde, methanol, or methane. Additionally, the formylation and/or alkylation of the N—H bonds of amines can also be achieved in certain catalytic systems with CO2 and hydrosilanes. Currently, remarkable progress has been made in the field of CO2 hydrosilylation. This focused review mainly describes advances in the design and catalytic performance of leading catalytic systems reported in the past three years, including noble transition metal catalysis, nonprecious transition metal catalysis, rare-earth metal catalysis, main-group metal catalysis, and metal-free catalysis. Moreover, current bottlenecks and perspectives of this field are also discussed.
| [1] | Schuur E. A.; McGuire A. D.; Schadel C.; Grosse G.; Harden J. W.; Hayes D. J.; Hugelius G.; Koven C. D.; Kuhry P.; Lawrence D. M.; Natali S. M.; Olefeldt D.; Romanovsky V. E.; Schaefer K.; Turetsky M. R.; Treat C. C.; Vonk J. E. Nature 2015, 520, 171. |
| [2] | Canadell J. G.; Schulze E. D. Nat. Commun. 2014, 5, 5282. |
| [3] | Hotchkiss J. H.; Werner B. G.; Lee E. Y. C. Compr. Rev. Food Sci. Food Saf. 2006, 5, 158. |
| [4] | Cuomo R.; Sarnelli G.; Savarese M. F.; Buyckx M. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 683. |
| [5] | Singh P.; Wani A. A.; Karim A. A.; Langowski H.-C. Int. J. Dairy Technol. 2012, 65, 161. |
| [6] | Pearson A. Int. J. Refrig. 2005, 28, 1140. |
| [7] | Ramsey E.; Sun Q.; Zhang Z.; Zhang C.; Gou W. J. Environ. Sci. 2009, 21, 720. |
| [8] | Zhou Y.; Zhu R.; Wei G. Powder Technol. 2021, 389, 21. |
| [9] | You X.; He S.; Zhang M.; Zeng J.; Li L.; Wang Q.; Wang Q.; Li Y. Steel Res. Int. 2019, 91, 1900450. |
| [10] | Maeda C.; Miyazaki Y.; Ema T. Catal. Sci. Technol. 2014, 4, 1482. |
| [11] | Ye R.-P.; Ding J.; Gong W.; Argyle M. D.; Zhong Q.; Wang Y.; Russell C. K.; Xu Z.; Russell A. G.; Li Q.; Fan M.; Yao Y.-G. Nat. Commun. 2019, 10, 5698. |
| [12] | Artz J.; Müller T. E.; Thenert K.; Kleinekorte J.; Meys R.; Sternberg A.; Bardow A.; Leitner W. Chem. Rev. 2017, 118, 434. |
| [13] | Chauvier C.; Cantat T. ACS Catal. 2017, 7, 2107. |
| [14] | Kostera S.; Peruzzini M.; Gonsalvi L. Catalysts 2021, 11, 58. |
| [15] | Fernández-Alvarez F. J.; Oro L. A. ChemCatChem 2018, 10, 4783. |
| [16] | Chen J.; McGraw M.; Chen E. Y. ChemSusChem 2019, 12, 4543. |
| [17] | Wang X.; Xia C.; Wu L. Green Chem. 2018, 20, 5415. |
| [18] | Zhang Y.; Zhang T.; Das S. Green Chem. 2020, 22, 1800. |
| [19] | Motokura K.; Pramudita R. A. Chem. Rec. 2019, 19, 1199. |
| [20] | Fernández-Alvarez F. J.; Aitani A. M.; Oro L. A. Catal. Sci. Technol. 2014, 4, 611. |
| [21] | Iglesias M.; Fernández-Alvarez F. J.; Oro L. A. Coord. Chem. Rev. 2019, 386, 240. |
| [22] | Zhao S.; Liang H.-Q.; Hu X.-M.; Li S.; Daasbjerg K. Angew. Chem., Int. Ed. 2022, 61, e202204008. |
| [23] | Liu M.; Qin T.; Zhang Q.; Fang C.; Fu Y.; Lin B.-L. Sci. China: Chem. 2015, 58, 1524. |
| [24] | Li B.; Sortais J.-B.; Darcel C. RSC Adv. 2016, 6, 57603. |
| [25] | Liu X.; Li J.; Li N.; Li B.; Bu X.-H. Chin. J. Chem. 2021, 39, 440. |
| [26] | Jiang Y.; Li G.; Chen Q.; Xu Z.; Lin S.; Guo G. Acta Chim. Sinica 2022, 80, 703 (in Chinese). |
| [26] | (蒋银龙, 李国超, 陈青松, 徐忠宁, 林姗姗, 郭国聪, 化学学报, 2022, 80, 703.) |
| [27] | Wang X.; Yang X.; Chen C.; Li H.; Huang Y.; Cao R. Acta Chim. Sinica 2022, 80, 22 (in Chinese). |
| [27] | (王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.) |
| [28] | Addis D.; Das S.; Junge K.; Beller M. Angew. Chem., Int. Ed. 2011, 50, 6004. |
| [29] | Wang H.; Dong Y.; Zheng C.; Sandoval C. A.; Wang X.; Makha M.; Li Y. Chem 2018, 4, 2883. |
| [30] | Yan F.; Bai J.-F.; Dong Y.; Liu S.; Li C.; Du C.-X.; Li Y. JACS Au 2022, 2, 2522. |
| [31] | Dong Y.; Yang P.; Zhao S.; Li Y. Nat. Commun. 2020, 11, 4096. |
| [32] | Kunihiro K.; Heyte S.; Paul S.; Roisnel T.; Carpentier J. F.; Kirillov E. Chem. Eur. J. 2021, 27, 3997. |
| [33] | Guzmán J.; Torguet A.; García-Ordu?a P.; Lahoz F. J.; Oro L. A.; Fernández-Alvarez F. J. J. Organomet. Chem. 2019, 897, 50. |
| [34] | Guzmán J.; Urriolabeitia A.; Padilla M.; García-Ordu?a P.; Polo V.; Fernández-Alvarez F. J. Inorg. Chem. 2022, 61, 20216. |
| [35] | Guzmán J.; García-Ordu?a P.; Lahoz F. J.; Fernández-Alvarez F. J. RSC Adv. 2020, 10, 9582. |
| [36] | Ojeda-Amador A. I.; Munarriz J.; Alamán-Valtierra P.; Polo V.; Puerta-Oteo R.; Jiménez M. V.; Fernández-Alvarez F. J.; Pérez-Torrente J. J. ChemCatChem 2019, 11, 5524. |
| [37] | Roa D. A.; Garcia J. J. New J. Chem. 2023, 47, 4504. |
| [38] | González T.; García J. J. Polyhedron 2021, 203, 115242. |
| [39] | Chakraborty S.; Nath R.; Kumar Ray A.; Paul A.; Mandal S. K. Chem. Eur. J. 2022, 28, e202202710. |
| [40] | Huang Z.; Jiang X.; Zhou S.; Yang P.; Du C.-X.; Li Y. ChemSusChem 2019, 12, 3054. |
| [41] | Bertini F.; Glatz M.; Sto?ger B.; Peruzzini M.; Veiros L. F.; Kirchner K.; Gonsalvi L. ACS Catal. 2019, 9, 632. |
| [42] | Buss J. A.; Shida N.; He T.; Agapie T. ACS Catal. 2021, 11, 13294. |
| [43] | Song Z.; Liu J.; Xing S.; Shao X.; Li J.; Peng J.; Bai Y. Org. Biomol. Chem. 2023, 21, 832. |
| [44] | Yang F.; Saiki Y.; Nakaoka K.; Ema T. Adv. Synth. Catal. 2023, 365, 877. |
| [45] | Cramer H. H.; Chatterjee B.; Weyhermuller T.; Werlé C.; Leitner W. Angew. Chem., Int. Ed. 2020, 59, 15674. |
| [46] | Cramer H. H.; Ye S.; Neese F.; Werlé C.; Leitner W. JACS Au 2021, 1, 2058. |
| [47] | Siddique M.; Boity B.; Rit A. Organometallics 2023, 42, 1395. |
| [48] | Li W.-D.; Chen J.; Zhu D.-Y.; Xia J.-B. Chin. J. Chem. 2021, 39, 614. |
| [49] | Beh D. W.; Piers W. E.; Gelfand B. S.; Lin J.-B. Dalton Trans. 2020, 49, 95. |
| [50] | Gurina G. A.; Kissel A. A.; Lyubov D. M.; Luconi L.; Rossin A.; Tuci G.; Cherkasov A. V.; Lyssenko K. A.; Shavyrin A. S.; Ob'edkov A. M.; Giambastiani G.; Trifonov A. A. Dalton Trans. 2020, 49, 638. |
| [51] | Chang K.; del Rosal I.; Zheng X.; Maron L.; Xu X. Dalton Trans. 2021, 50, 7804. |
| [52] | Shinohara K.; Tsurugi H.; Mashima K. ACS Catal. 2022, 12, 8220. |
| [53] | Zhang Q.; Fukaya N.; Fujitani T.; Choi J.-C. Bull. Chem. Soc. Jpn. 2019, 92, 1945. |
| [54] | Zhang Q.; Lin X.-T.; Fukaya N.; Fujitani T.; Sato K.; Choi J.-C. Green Chem. 2020, 22, 8414. |
| [55] | Du C.; Chen Y. Acta Chim. Sinica 2020, 78, 938 (in Chinese). |
| [55] | (杜重阳, 陈耀峰. 化学学报, 2020, 78, 938.) |
| [56] | Ritter F.; Spaniol T. P.; Douair I.; Maron L.; Okuda J. Angew. Chem., Int. Ed. 2020, 59, 23335. |
| [57] | Huang X.; Zhang K.; Shao Y.; Li Y.; Gu F.-L.; Qu L.-B.; Zhao C.; Ke Z. ACS Catal. 2019, 9, 5279. |
| [58] | Chambenahalli R.; Bhargav R. M.; McCabe K. N.; Andrews A. P.; Ritter F.; Okuda J.; Maron L.; Venugopal A. Chem. Eur. J. 2021, 27, 7391. |
| [59] | Ritter F.; Morris L. J.; McCabe K. N.; Spaniol T. P.; Maron L.; Okuda J. Inorg. Chem. 2021, 60, 15583. |
| [60] | Ruccolo S.; Amemiya E.; Shlian D. G.; Parkin G. Can. J. Chem. 2021, 99, 259. |
| [61] | Ruccolo S.; Sambade D.; Shlian D. G.; Amemiya E.; Parkin G. Dalton Trans. 2022, 51, 5868. |
| [62] | Sattler W.; Shlian D. G.; Sambade D.; Parkin G. Polyhedron 2020, 187, 114542. |
| [63] | Sattler W.; Parkin G. Catal. Sci. Technol. 2014, 4, 1578. |
| [64] | Ruccolo S.; Sattler W.; Rong Y.; Parkin G. J. Am. Chem. Soc. 2016, 138, 14542. |
| [65] | Ruccolo S.; Rauch M.; Parkin G. Organometallics 2018, 37, 1708. |
| [66] | Shlian D. G.; Amemiya E.; Parkin G. Chem. Commun. 2022, 58, 4188. |
| [67] | Baalbaki H. A.; Shu J.; Nyamayaro K.; Jung H.-J.; Mehrkhodavandi P. Chem. Commun. 2022, 58, 6192. |
| [68] | Takaishi K.; Kosugi H.; Nishimura R.; Yamada Y.; Ema T. Chem. Commun. 2021, 57, 8083. |
| [69] | Tolzmann M.; Schürmann L.; Hepp A.; Uhl W.; Layh M. Eur. J. Inorg. Chem. 2020, 4024. |
| [70] | Bolley A.; Specklin D.; Dagorne S. Polyhedron 2021, 194, 114956. |
| [71] | Huang W.; Roisnel T.; Dorcet V.; Orione C.; Kirillov E. Organometallics 2020, 39, 698. |
| [72] | Caise A.; Hicks J.; ángeles Fuentes M.; Goicoechea J. M.; Aldridge S. Chem. Eur. J. 2021, 27, 2138. |
| [73] | Rauch M.; Strater Z.; Parkin G. J. Am. Chem. Soc. 2019, 141, 17754. |
| [74] | Sarkar D.; Weetman C.; Dutta S.; Schubert E.; Jandl C.; Koley D.; Inoue S. J. Am. Chem. Soc. 2020, 142, 15403. |
| [75] | Jiang X.; Huang Z.; Makha M.; Du C.-X.; Zhao D.; Wang F.; Li Y. Green Chem. 2020, 22, 5317. |
| [76] | Murata T.; Hiyoshi M.; Maekawa S.; Saiki Y.; Ratanasak M.; Hasegawa J.; Ema T. Green Chem. 2022, 24, 2385. |
| [77] | Hulla M.; Nussbaum S.; Bonnin A. R.; Dyson P. J. Chem. Commun. 2019, 55, 13089. |
| [78] | Murata T.; Hiyoshi M.; Ratanasak M.; Hasegawa J.; Ema T. Chem. Commun. 2020, 56, 5783. |
| [79] | Li X.-Y.; Fu H.-C.; Liu X.-F.; Yang S.-H.; Chen K.-H.; He L.-N. Catal. Today 2020, 356, 563. |
| [80] | Yu Z.; Li Z.; Zhang L.; Zhu K.; Wu H.; Li H.; Yang S. Green Chem. 2021, 23, 5759. |
/
| 〈 |
|
〉 |