综述与进展

碳基非金属催化剂在有机合成领域的应用及机理研究

  • 赵茜帆 ,
  • 陈永正 ,
  • 张世明
展开
  • a 遵义医科大学药学院 贵州省绿色制药工程研究中心 贵州省仿制药工程研究中心 贵州省生物催化与手性药物合成重点实验室 贵州遵义 563000
    b 遵义医科大学 基础药理教育部重点实验室 特色民族药教育部国际合作联合实验室 贵州遵义 563000

收稿日期: 2023-06-12

  修回日期: 2023-08-14

  网络出版日期: 2023-08-30

基金资助

国家自然科学基金(21865040); 国家自然科学基金(22005356); 贵州省科学技术厅(QKHPTRC[2019]1463); 遵义市科技厅(ZSKRPT-2020-5); 遵义市科技厅(ZSKH-2018-3); 遵义市科技厅(ZSKRPT-2021-5); 遵义医科大学研究生科研基金(ZYK82)

Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis

  • Qianfan Zhao ,
  • Yongzheng Chen ,
  • Shiming Zhang
Expand
  • a Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000
    b Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000

Received date: 2023-06-12

  Revised date: 2023-08-14

  Online published: 2023-08-30

Supported by

National Natural Science Foundation of China(21865040); National Natural Science Foundation of China(22005356); Guizhou Provincial Science and Technology Program(QKHPTRC[2019]1463); Science and Technology Department of Zunyi(ZSKRPT-2020-5); Science and Technology Department of Zunyi(ZSKH-2018-3); Science and Technology Department of Zunyi(ZSKRPT-2021-5); Graduate Research Foundation of Zunyi Medical University(ZYK82)

摘要

碳基非金属催化剂是指包括碳纳米管(CNTs)、氧化石墨烯(GO)、石墨烯(G)、活性炭(AC)及其掺杂或修饰后得到的材料作为用于涉及能量转换等关键反应过程的催化剂. 碳基非金属催化剂由于具有来源丰富、成本低、对环境友好、后处理简单、可持续发展等优点, 近年来被成功应用于有机合成领域. 基于碳基非金属催化剂应用于氧化反应、还原反应、取代反应和偶联反应被成功报道, 但针对碳基非金属催化剂应用于有机合成领域进行催化的活性位点的研究目前仍处于早期发展阶段. 近年来, 科学家们针对其机理的研究主要集中于对催化剂的表征分析和第一性原理计算, 但未得出相对一致的实验结论. 对碳基非金属催化剂在有机合成领域的应用及机理研究进行了综述.

本文引用格式

赵茜帆 , 陈永正 , 张世明 . 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024 , 44(1) : 137 -147 . DOI: 10.6023/cjoc202306010

Abstract

Carbon nanotubes (CNTs), graphite oxide (GO), graphene (G), activated carbon (AC), and materials generated by AC after doping or modification are examples of carbon-based metal-free catalysts. These catalysts are used in critical chemical processes like energy conversion. Due to its advantages of abundant materials, low cost, environmental friendliness, straightforward post-processing and sustainable development, carbon-based metal-free catalysts have been successfully used in the field of organic synthesis in recent years. The application of carbon-based metal-free catalysts in oxidation, reduction, substitution and coupling reactions has been successfully reported. However, the research on the active site of carbon-based metal-free catalysts used in organic synthesis is still in its early stage of development. Recent research has mostly concentrated on the characterization and study of catalysts as well as first-principles predictions for their mechanisms, but generally consistent experimental conclusions have not been reached. Therefore, the application and mechanism research of carbon-based metal-free catalysts in the field of organic synthesis are reviewed.

参考文献

[1]
Ge, S.; Liu, X.; Liu, J.; Liu, H.; Liu, H.; Chen, X.; Wang, G.; Chen, J.; Zhang, G.; Zhang, Y.; Li, J. Fuel 2022, 314, 123061.
[2]
Wan, L.; Miao, S.; He, Z.; Li, X.; Zhou, X.; Gao, F. ACS Omega 2021, 6, 23347.
[3]
Shen, X.; Yang, J.; Zhang, J.; Jiang, H.; Du, Y.; Chen, R. Ind. Eng. Chem. Res. 2023, 62, 279.
[4]
Yu, Z.; Li, Y.; Torres-Pinto, A.; LaGrow, A. P.; Diaconescu, V. M.; Simonelli, L.; Sampaio, M. J.; Bondarchuk, O.; Amorim, I.; Araujo, A.; Silva, A. M. T.; Silva, C. G.; Faria, J. L.; Liu, L. Appl. Catal., B: Environ. 2022, 310, 121318.
[5]
Ge, M.; Zhang, X.; Xia, S.; Luo, W.; Jin, Y.; Chen, Q.; Nie, H.; Yang, Z. Chin. J. Chem. 2021, 39, 2113.
[6]
Hu, X.; Guo, F.; Zhu, R.; Zhou, B.; Zhang, T.; Fang, L. Chin. J. Org. Chem. 2023, 43, 2239 (in Chinses).
[6]
(户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真, 有机化学, 2023, 43, 2239.)
[7]
Maurer, F.; Beck, A.; Jelic, J.; Wang, W.; Mangold, S.; Stehle, M.; Wang, D.; Dolcet, P.; G?nzler, A. M.; Kübel, C.; Studt, F.; Casapu, M.; Grunwaldt, J.-D. ACS Catal. 2022, 12, 2473.
[8]
Mohammadi, A.; Farzi, A.; Thurner, C.; Kl?tzer, B.; Schwarz, S.; Bernardi, J.; Niaei, A.; Penner, S. Appl. Catal., B: Environ. 2022, 307, 121160.
[9]
Ai, X.; Chen, H.; Liang, X.; Shi, L.; Zhang, M.; Zhang, K.; Zou, Y.; Zou, X. ACS Catal. 2022, 12, 2967.
[10]
Pang, S.; Liu, F.; Zhang, Y.; Dong, Z.; Su, Q.; Wang, W.; Li, Z.; Zhou, F.; Wang, Y. ACS Sustainable Chem. Eng. 2021, 9, 9062.
[11]
Zheng, P.; Jiang, W.; Qin, Q.; Li, D. Molecules (Basel, Switzerland) 2021, 26, 5199.
[12]
Modekwe, H. U.; Mamo, M.; Moothi, K.; Daramola, M. O. Mater. Today: Proc. 2021, 38, 549.
[13]
Jiang, J.; Zheng, X.; Meng, Y.; He, W.; Chen, Y.; Zhuang, Q.; Yuan, J.; Ju, Z.; Zhang, X. Acta Chim. Sinica 2023, 81, 319 (in Chinese).
[13]
(蒋江民, 郑欣冉, 孟雅婷, 贺文杰, 陈亚鑫, 庄全超, 袁加仁, 鞠治成, 张校刚, 化学学报, 2023, 81, 319.)
[14]
Choudhary, P.; Bahuguna, A.; Kumar, A.; Dhankhar, S. S.; Nagaraja, C. M.; Krishnan, V. Green Chem. 2020, 22, 5084.
[15]
Nosan, M.; Lffler, M.; Jerman, I.; Kolar, M.; Genorio, B. ACS Appl. Energy Mater. 2021, 4, 3593.
[16]
Zeng, Y.; Lyu, P.; Cai, Y.; Gao, F.; Zhuo, O.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica. 2021, 79, 539 (in Chinese).
[16]
(曾誉, 吕品, 蔡跃进, 高福杰, 卓欧, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 539.)
[17]
Singla, S.; Sharma, S.; Basu, S.; Shetti, N. P.; Reddy, K. R. FlatChem. 2020, 24, 100200.
[18]
Yi, H.; Nakabayashi, K.; Yoon, S.-H.; Miyawaki, J. RSC Adv. 2022, 12, 2558.
[19]
Zhao, S.; Lu, X.; Wang, L.; Gale, J.; Amal, R. Adv. Mater. 2019, 31, 1805367.
[20]
Liu, D.; Dai, L.; Lin, X.; Chen, J.-F.; Zhang, J.; Feng, X.; Müllen, K.; Zhu, X.; Dai, S. Adv. Mater. 2019, 31, 1804863.
[21]
Zhao, S.; Wang, D.-W.; Amal, R.; Dai, L. Adv. Mater. 2019, 31, 1801526.
[22]
Ahmad, M. S.; Nishina, Y. Nanoscale. 2020, 12, 12210.
[23]
Messele, S. A.; Chelme-Ayala, P.; Gamal El-Din, M. Catal. Today. 2021, 361, 102.
[24]
Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Su, D. S. Science. 2008, 322, 73.
[25]
Jiang, T.; Jiang, W.; Li, Y.; Xu, Y.; Zhao, M.; Deng, M.; Wang, Y. Carbon 2021, 180, 92.
[26]
Mollar-Cuni, A.; Ventura-Espinosa, D.; Martín, S.; García, H.; Mata, J. A. ACS Catal. 2021, 11, 14688.
[27]
Teh, W. P.; Obenschain, D. C.; Black, B. M.; Michael, F. E. J. Am. Chem. Soc. 2020, 142, 16716.
[28]
Huang, T.; Fu, Y.; Peng, Q.; Yu, C.; Zhu, J.; Yu, A.; Wang, X. Appl. Surf. Sci. 2019, 480, 888.
[29]
Chen, S. S.; Carraher, J. M.; Tuci, G.; Rossin, A.; Raman, C. A.; Luconi, L.; Tsang, D. C. W.; Giambastiani, G.; Tessonnier, J.-P. ACS Sustainable Chem. Eng. 2019, 7, 16959.
[30]
Yuan, J.; Wang, Z.; Liu, J.; Li, J.; Chen, J. Environ. Sci. Technol. 2023, 57, 606.
[31]
Enders, L.; Casadio, D. S.; Aikonen, S.; Lenarda, A.; Wirtanen, T.; Hu, T.; Hietala, S.; Ribeiro, L. S.; Pereira, M. F. R.; Helaja, J. Catal. Sci. Technol. 2021, 11, 5962.
[32]
Anthore-Dalion, L.; Nicolas, E.; Cantat, T. ACS Catal. 2019, 9, 11563.
[33]
Yang, J.-H.; Sun, G.; Gao, Y.; Zhao, H.; Tang, P.; Tan, J.; Lu, A.-H.; Ma, D. Energy Environ. Sci. 2013, 6, 793.
[34]
Dhakshinamoorthy, A.; Primo, A.; Concepcion, P.; Alvaro, M.; Garcia, H. Chemistry 2013, 19, 7547.
[35]
Dreyer, D. R.; Jia, H.-P.; Todd, A. D.; Geng, J.; Bielawski, C. W. Org. Biomol. Chem. 2011, 9, 7292.
[36]
Zhang, J.; Chen, S.; Chen, F.; Xu, W.; Deng, G.-J.; Gong, H. Adv. Synth. Catal. 2017, 359, 2358.
[37]
Tanaka, T.; Okunaga, K.-i.; Hayashi, M. Tetrahedron Lett. 2010, 51, 4633.
[38]
Long, J.; Xie, X.; Xu, J.; Gu, Q.; Chen, L.; Wang, X. ACS Catal. 2012, 2, 622.
[39]
Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; McDermott, W. P.; Chieregato, A.; Hermans, I. Science 2016, 354, 1570.
[40]
Rozanska, X.; Fortrie, R.; Sauer, J. J. Phys. Chem. C 2007, 111, 6041.
[41]
Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365.
[42]
Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1334.
[43]
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101.
[44]
Gao, Y.; Hu, G.; Zhong, J.; Shi, Z.; Zhu, Y.; Su, D. S.; Wang, J.; Bao, X.; Ma, D. Angew. Chem., Int. Ed. 2013, 52, 2109.
[45]
Zhu, Y.-N.; Cao, C.-Y.; Jiang, W.-J.; Yang, S.-L.; Hu, J.-S.; Song, W.-G.; Wan, L.-J. J. Mater. Chem. A. 2016, 4, 18470.
[46]
Hou, S.; Chen, N.; Zhang, P.; Dai, S. Green Chem. 2019, 21, 1455.
[47]
Vermeulen, L. A.; Thompson, M. E. Nature 1992, 358, 656.
[48]
Geim, A. K. Science 2009, 324, 1530.
[49]
Stankovich, S.; Dikin, D. A.; Dommett, G.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S.; Ruoff, R. S. Nature 2006, 442, 282.
[50]
Dreyer, D. R.; Jia, H. P.; Bielawski, C. W. Angew. Chem., Int. Ed. 2010, 49, 6813.
[51]
Li, X.; Yuan, Z.; Liu, Y.; Yang, H.; Nie, J.; Wang, G.; Liu, B. ChemSusChem 2022, 15, 1.
[52]
Huang, J.; Bai, J.; Feng, J.; Jiang, Q.; Yang, G.; Wang, H.; Yu, H.; Zhang, Q.; Cao, Y.; Peng, F. ACS Sustainable Chem. Eng. 2022, 10, 6713.
[53]
Cai, Z.; Liu, D.; Huang, J.; Feng, J.; Wang, H.; Yang, G.; Peng, F.; Cao, Y.; Yu, H. Ind. Eng. Chem. Res. 2022, 61, 2037.
[54]
Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Chem. Commun. 2011, 47, 2432.
[55]
Yang, F.; Chi, C.; Wang, C.; Wang, Y.; Li, Y. Green Chem. 2016, 18, 4254.
[56]
Wei, Q.; Qin, F.; Ma, Q.; Shen, W. Carbon 2019, 141, 542.
[57]
Wu, S.; Wen, G.; Wang, J.; Rong, J.; Zong, B.; Schl?gl, R.; Su, D. S. Catal. Sci. Technol. 2014, 4, 4183.
[58]
Choi, C. H.; Lim, H.-K.; Chung, M. W.; Park, J. C.; Shin, H.; Kim, H.; Woo, S. I. J. Am. Chem. Soc. 2014, 136, 9070.
[59]
Zhang, J.; Li, S.; Deng, G.-J.; Gong, H. ChemCatChem 2018, 10, 376.
[60]
Ghorpade, P. V.; Pethsangave, D. A.; Some, S.; Shankarling, G. S. J. Org. Chem. 2018, 83, 7388.
[61]
Rodrigo, E.; García Alcubilla, B.; Sainz, R.; Fierro, J. L. G.; Ferritto, R.; Cid, M. B. Chem. Commun. 2014, 50, 6270.
[62]
Primo, A.; Franconetti, A.; Magureanu, M.; Mandache, N. B.; Bucur, C.; Rizescu, C.; Cojocaru, B.; Parvulescu, V. I.; Garcia, H. Green Chem. 2018, 20, 2611.
[63]
Kawashita, Y.; Yanagi, J.; Fujii, T.; Hayashi, M. Bull. Chem. Soc. Jpn. 2009, 82, 482.
[64]
Hu, F.; Patel, M.; Luo, F.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. J. Am. Chem. Soc. 2015, 137, 14473.
[65]
Meng, G.; Patel, M.; Luo, F.; Li, Q.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. Chem. Commun. 2019, 55, 5379.
[66]
Zhang, J.; Yang, Y.; Fang, J.; Deng, G. J.; Gong, H. Chem. Asian J. 2017, 12, 2524.
[67]
Majumdar, B.; Sarma, D.; Bhattacharya, T.; Sarma, T. K. ACS Sustainable Chem. Eng. 2017, 5, 9286.
[68]
Shaikh, M.; Sahu, A.; Kiran Kumar, A.; Sahu, M.; Singh, S. K.; Ranganath, K. V. S. Green Chem. 2017, 19, 4533.
[69]
Fang, J.; Peng, Z.; Yang, Y.; Wang, J.; Guo, J.; Gong, H. Asian J. Org. Chem. 2018, 7, 355.
[70]
Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S.-j.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y. J.; Ping Loh, K. Nat. Commun. 2012, 3, 1298.
文章导航

/