可见光催化有机硅的合成研究进展
收稿日期: 2023-06-30
修回日期: 2023-08-31
网络出版日期: 2023-09-08
基金资助
国家自然科学基金(22271100)
Recent Progress in Synthesis of Organosilanes Driven by Visible-Light
Received date: 2023-06-30
Revised date: 2023-08-31
Online published: 2023-09-08
Supported by
National Natural Science Foundation of China(22271100)
陈凤娟 , 刘罗 , 张子露 , 曾伟 . 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023 , 43(10) : 3454 -3469 . DOI: 10.6023/cjoc202306028
Silahydrocarbons are often encountered in pharmaceuticals and material chemistry. In comparison with all-carbon parent compounds, carbon/silicon switch generally endows the corresponding compounds with different biological activity and physical-chemical properties. In this review, the methods and strategies of synthesis of organosilanes by photoredox in recent years are reviewed, and the corresponding reaction mechanisms and limitations are discussed.
| [1] | F?rster B.; Bertermann R.; Kraft P.; Tacke R. Organometallics 2014, 33, 338. |
| [2] | Allred A. L.; Rochow E. G. J. Inorg. Nucl. Chem. 1958, 5, 264. |
| [3] | (a) Shen L.; Zhao K.; Doitomi K.; Ganguly R.; Li Y.-X.; Shen Z.-L.; Hirao H.; Loh T.-P. J. Am. Chem. Soc. 2017, 139, 13570. |
| [3] | (b) Breit N. C.; Szilvasi T.; Suzuki T.; Gallego D.; Inoue S. J. Am. Chem. Soc. 2013, 135, 17958. |
| [4] | (a) Akiyama T.; Imazeki S. Chem. Lett. 1997, 10, 1077. |
| [4] | (b) Fleming I.; Winter S. B. D. J. Chem. Soc., Perkin Trans. 1 1998, 2687. |
| [5] | (a) Chen X.; Li M. K.; Liu Z. P.; Yang C.; Xie H.; Hu X.; Su S.-J.; Jiang H.; Zeng W. Org. Lett. 2021, 23, 6724. |
| [5] | (b) Pawley S. B.; Conner A. M.; Omer H. M.; Watson D. A. ACS Catal. 2022, 12, 13108. |
| [5] | (c) Nakajimaa Y.; Shimada S. RSC Adv. 2015, 5, 20603. |
| [5] | (d) Ren L. Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400. |
| [5] | (e) Yang X. H.; Gao H. W.; Yan J. L.; Shi L. Chin. J. Org. Chem. 2022, 42, 4122 (in Chinese). |
| [5] | (杨惜晖, 高皓炜, 闫甲乐, 史雷, 有机化学, 2022, 42, 4122.) |
| [6] | (a) Albini A.; Fagnoni M. Photochemically Generated Intermediates in Synthesis Wiley, Hoboken, 2013. |
| [6] | (b) Brook A. G. In The Chemistry of Organic Silicon Compounds, Vol. 2, Eds.: Rappoport, Z.; Apeloig, Y., Wiley, New York, 1998, p. 1233. |
| [6] | (c) Steinmetz M. G. Chem. Rev. 1995, 95, 1527. |
| [6] | (d) Brix T.; Bastian E.; Potzinger P. J. J. Photochem. Photobiol. A 1989, 49, 287. |
| [7] | Matsumoto A.; Ito Y. J. Org. Chem. 2000, 65, 5707. |
| [8] | Chatgilialoglu C.; Ingold K. U.; Scaiano J. C.; Woynar H. J. Am. Chem. Soc. 1981, 103, 3231. |
| [9] | (a) Chatgilialoglu C.; Scaiano J. C.; Ingold K. U. Organometallics 1982, 1, 466. |
| [9] | (b) Lalev|e J.; Allonas X.; Fouassier J. P. J. Org. Chem. 2007, 72, 6434. |
| [10] | (a) Lykakis I. N.; Evgenidou E.; Orfanopoulos M. Curr. Org. Chem. 2012, 16, 2400. |
| [10] | (b) Hill C. L. J. Mol. Catal. A 2007, 262, 2. |
| [10] | (c) Renneke R. F.; Hill C. L. J. Am. Chem. Soc. 1986, 108, 3528. |
| [11] | (a) Fagnoni M.; Dondi D.; Ravelli D.; Albini A. Chem. Rev. 2007, 107, 2725. |
| [11] | (b) Ravelli D.; Dondi D.; Fagnoni M.; Albini A. Chem. Soc. Rev. 2009, 38, 1999. |
| [12] | (a) Dondi D.; Fagnoni M.; Albini A. Chem. Eur. J. 2006, 12, 4153. |
| [12] | (b) Tzirakis M. D.; Orfanopoulos M. J. Am. Chem. Soc. 2009, 131, 406. |
| [12] | (c) Tzirakis M. D.; Orfanopoulos M. Angew. Chem., Int. Ed. 2010, 49, 5891. |
| [12] | (d) Qrareya H.; Ravelli D.; Fagnoni M.; Albini A. Adv. Synth. Catal. 2013, 355, 2891. |
| [13] | Ryu I.; Tani A.; Fukuyama T.; Ravelli D.; Montanaro S.; Fagnoni M. Org. Lett. 2013, 15, 2554. |
| [14] | Halperin S. D.; Fan H.; Chang S.; Martin R. E.; Britton R. Angew. Chem., Int. Ed. 2014, 53, 4690. |
| [15] | Laleve J.; Blanchard N.; Tehfe M.-A.; Fouassier J. P. Macromol. Rapid. Commun. 2011, 32, 838. |
| [16] | Qrareya H.; Dondi D.; Ravelli D.; Fagnoni M. ChemCatChem 2015, 7, 3350. |
| [17] | (a) Capaldo L.; Ravelli D. Eur. J. Org. Chem. 2017, 2056. |
| [17] | (b) Protti S.; Fagnoni M.; Ravelli D. ChemCatChem 2015, 7, 1516. |
| [17] | (c) Ravelli D.; Dondi D.; Fagnoni M.; Albini A. Chem. Soc. Rev. 2009, 38, 1999. |
| [17] | (d) Fagnoni M.; Dondi D.; Ravelli D.; Albini A. Chem. Rev. 2007, 107, 2725. |
| [18] | (a) Salamone M.; Bietti M. Acc. Chem. Res. 2015, 48, 2895. |
| [18] | (b) Roberts B. P. Chem. Soc. Rev. 1999, 28, 25. |
| [19] | (a) Le C.; Liang Y.; Evans R. W.; Li X.; MacMillan D. W. C. Nature 2017, 547, 79. |
| [19] | (b) Shaw M. H.; Shurtleff V. W.; Terrett J. A.; Cuthbertson J. D.; MacMillan D. W. C. Science 2016, 352, 1304. |
| [19] | (c) Jeffrey J. L.; Terrett J. A.; MacMillan D. W. C. Science 2015, 349, 1532. |
| [20] | Zhou R.; Goh Y. Y.; Liu H.; Tao H.; Li L.; Wu J. Angew. Chem., Int. Ed. 2017, 56, 16621. |
| [21] | Zhu J.; Cui W.-C.; Wang S. Z.; Yao Z.-J. J. Org. Chem. 2018, 83, 14600. |
| [22] | Cai Y. Y.; Zhao W. X.; Wang S. Z.; Liang T.; Yao Z. J. Org. Lett. 2019, 21, 9836. |
| [23] | Luo C.; Lu W.-H.; Wang G.-Q.; Zhang Z.-B.; Li H.-Q.; Han P.; Yang D.; Jing L.-H.; Wang C. J. Org. Chem. 2022, 87, 3567. |
| [24] | (a) Yamamoto Y. Chem. Rev. 2012, 112, 4736. |
| [24] | (b) Felix R. J.; Munro-Leighton C.; Gagne M. R. Acc. Chem. Res. 2014, 47, 2319. |
| [24] | (c) Widenhoefer R. A. Acc. Chem. Res. 2002, 35, 905. |
| [24] | (d) Ojima I.; Tzamarioudaki M.; Li Z.; Donovan R. J. Chem. Rev. 1996, 96, 635. |
| [24] | (e) Malacria M. Chem. Rev. 1996, 96, 289. |
| [24] | (f) Curran D. P. In Comprehensive Organic Synthesis, Vol. 4, Eds.: Trost, B. M.; Fleming, I.; Semmelhack, M. F., Pergamon, Oxford, 1991, pp. 818-827. |
| [25] | (a) Beckwith A. L. J.; Schiesser C. H. Tetrahedron Lett. 1985, 26, 273. |
| [25] | (b) Spellmeyer D. C.; Houk K. N. J. Org. Chem. 1987, 52, 959. |
| [26] | Cui W.-C.; Zhao W. X.; Gao M. Liu W.; Wang S. Z.; Liang Y.; Yao Z.-J. Chem. Eur. J. 2019, 25, 16506. |
| [27] | Hou H.; Xu Y.; Yang H. B.; Chen X. Y.; Yan C. G.; Shi Y. C.; Zhu S. Q. Org. Lett. 2020, 22, 1748. |
| [28] | (a) Hou J.; Ee A.; Cao H.; Ong H.-W.; Xu J.-H.; Wu J. Angew. Chem., Int. Ed. 2018, 57, 17220. |
| [28] | (b) Yu W. L.; Luo Y. C.; Yan L.; Liu D.; Wang Z. Y.; Xu P. F. Angew. Chem., Int. Ed. 2019, 58, 10941. |
| [29] | Zhang Z. K.; Hu X. L. ACS Catal. 2020, 10, 777. |
| [30] | Neogi S.; Ghosh A. K.; Mandal S.; Ghosh D.; Ghosh S.; Hajra A. Org. Lett. 2021, 23, 6510. |
| [31] | (a) Fried J.; Sabo E. J. Am. Chem. Soc. 1954, 76, 1455. |
| [31] | (b) Inoue M.; Sumii Y.; Shibata N. ACS Omega 2020, 5, 10633. |
| [31] | (c) Ogawa Y.; Tokunaga E.; Kobayashi O.; Hirai K.; Shibata N. iScience 2020, 23, 101467. |
| [32] | (a) Moore W. R.; Schatzman G. L.; Jarvi E. T.; Gross R. S.; McCarthy J. R. J. Am. Chem. Soc. 1992, 114, 360. |
| [32] | (b) Lim M. H.; Kim H. O.; Moon H. R.; Chun M. W.; Jeong L. S. Org. Lett. 2002, 4, 529. |
| [32] | (c) Pan Y.; Qiu J.; Silverman R. B. J. Med. Chem. 2003, 46, 5292. |
| [33] | (a) Barroso G.; Li Q.; Bordia R. K.; Motz G. J. Mater. Chem. A 2019, 7, 1936. |
| [33] | (b) Deyko G. S.; Glukhov L. M.; Kustov L. M. Int. J. Hydrogen Energy 2020, 45, 33807. |
| [33] | (c) Guillot S. L.; Usrey M. L.; Pen?a-Hueso A.; Kerber B. M.; Zhou L.; Du P.; Johnson T. J. Electrochem. Soc. 2021, 168, 030533. |
| [34] | Yue F. Y.; Liu J. H.; Ma H.; Liu Y. X.; Dong J. Y.; Wang Q. M. Org. Lett. 2022, 24, 4019. |
| [35] | Luo C.; Zhou Y.; Chen H.; Wang T.; Zhang Z.-B.; Han P.; Jing L.-H. Org. Lett. 2022, 24, 4286. |
| [36] | (a) Chan T. H.; Fleming I. Synthesis 1979, 761. |
| [36] | (b) Blumenkopf T. A.; Overman L. E. Chem. Rev. 1986, 86, 857. |
| [36] | (c) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375. |
| [36] | (d) Fleming I.; Barbero A.; Walter D. Chem. Rev. 1997, 97, 2063. |
| [36] | (e) Curtis-Long M. J.; Aye Y. Chem.-Eur. J. 2009, 15, 5402. |
| [36] | (f) Szudkowska-Fra?tczak J.; Hreczycho G.; Pawluc? P. Org. Chem. Front. 2015, 2, 730. |
| [37] | (a) Albini A.; Fagnoni M. Hydrosilylation: A Comprehensive Review on Recent Advances, Springer, Berlin, 2009. |
| [37] | (b) Trost B. M.; Ball Z. T. Synthesis 2005, 853. |
| [37] | (c) Lim D. S. W.; Anderson E. A. Synthesis 2012, 44, 983. |
| [37] | (d) Sun J.; Deng L. ACS Catal. 2016, 6, 290. |
| [38] | Zhu J.; Cui W.-C.; Wang S. Z.; Yao Z.-J. Org. Lett. 2018, 20, 3174. |
| [39] | Liang H.; Ji Y.-X.; Wang R.-H.; Zhang Z.-H.; Zhang B. Org. Lett. 2019, 21, 2750. |
| [40] | For selected reviews, please see: (b) Pooni P. K.; Showell G. A. Mini-Rev. Med. Chem. 2006, 6, 1169. |
| [40] | (b) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388. |
| [40] | (c) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779. |
| [41] | (a) Denmark S. E.; Kallemeyn J. M. Org. Lett. 2003, 5, 3483. |
| [41] | (b) Hamze A.; Provot O.; Alami M.; Brion J.-D. Org. Lett. 2006, 8, 931. |
| [41] | (c) Guo L.; Chatupheeraphat A.; Rueping M. Angew. Chem., Int. Ed., 2016, 55, 11810. |
| [42] | (a) Toutov A. A. Liu W.-B.; Betz K. N.; Fedorov A. Stoltz B. M.; Grubbs R. H. Nature 2015, 518, 80. |
| [42] | (b) Liu W.-B.; Schuman D. P.; Yang Y.-F.; Toutov A. A.; Liang Y.; Klare H. F. T.; Nesnas N.; Oestreich M.; Blackmond D. G.; Virgil S. C.; Banerjee S.; Zare R. N.; Grubbs R. H.; Houk K. N.; Stoltz B. M. J. Am. Chem. Soc. 2017, 139, 6867. |
| [43] | Liu S. H.; Pan P.; Fan H. Q.; Li H.; Wang W.; Zhang Y. Q. Chem. Sci. 2019, 10, 3817. |
| [44] | Yang C.; Wang J.; Li J. H.; Ma W. C.; An K.; He W.; Jiang C. Adv. Synth. Catal. 2018, 360, 3049. |
| [45] | (a) Yu M. M.; Jing H. Z.; Liu X.; Fu X. F. Organometallics 2015, 34, 5754. |
| [45] | (b) Urayama T.; Mitsudome T.; Maeno Z.; Mizugaki T.; Jitsukawa K.; Kaneda K. Chem. Lett. 2015, 44, 1062. |
| [45] | (c) Lin J.-D.; Bi Q.-Y.; Tao L.; Jiang T.; Liu Y.-M.; He H.-Y.; Cao Y.; Wang Y.-D. ACS Catal. 2017, 7, 1720. |
| [46] | Rammal F.; Gao D.; Boujnah S.; Hussein A. A.; Laleve?e J.; Gaumont A.-C.; Morlet-Savary F.; Lakhdar S. ACS Catal. 2020, 10, 13710. |
| [47] | Dai C. H.; Zhan Y. L.; Liu P.; Sun P. P. Green Chem. 2021, 23, 314. |
| [48] | Zhang W. J.; Lu Q.; Wang M. S.; Zhang Y. J.; Xia X.-F.; Wang D. W. Org. Lett. 2022, 24, 3797. |
| [49] | (a) Mizuno K. Tetrahedron Lett. 1989, 30, 3689. |
| [49] | (b) Kako M.; Morita T.; Torihara T.; Nakadaira Y. J. Chem. Soc., Chem. Commun. 1993, 1993, 678. |
| [49] | (c) Mizuno K.; Nakanishi K.; Chosa J. I.; Otsuji Y. J. Organomet. Chem. 1994, 473, 35. |
| [50] | Liu R. F.; Chia S. P. M.; Goh Y. Y.; Cheo H. W.; Fan B. B.; Li R. F.; Zhou R.; Wu J. Eur. J. Org. Chem. 2020, 1459. |
| [51] | Yu X. Y.; Lübbesmeyer M.; Studer A. Angew. Chem., Int. Ed. 2021, 60, 675. |
| [52] | Yu X. Y.; Daniliuc C. G.; Alasmary F. A; Studer A. Angew. Chem., Int. Ed. 2021, 60, 23335. |
| [53] | Matsumoto A.; Ito A. J. Org. Chem. 2000, 65, 5707. |
| [54] | Zhong M.; Pannecoucke X.; Jubault P.; Poisson T. Chem. - Eur. J. 2021, 27, 11818. |
| [55] | Takemura N.; Sumida Y.; Ohmiya H. ACS Catal. 2022, 12, 7804. |
| [56] | Xu N. X.; Li B. X.; Wang C.; Uchiyama M. Angew. Chem., Int. Ed. 2020, 59, 10639. |
| [57] | Chen F. J.; Shao Y. X.; Li M. K.; Yang C.; Su S. J.; Jiang H. F.; Ke Z. F.; Zeng W. Nat. Commun. 2021, 12, 3304. |
| [58] | Iwamoto T.; Sato K.; Ishida S.; Kabuto C.; Kira M. J. Am. Chem. Soc. 2006, 128, 16914. |
| [59] | Tang Z.; Chen F. J.; Huang G. J.; Li Y. K.; Jiang H. F.; Zeng W. Org. Lett. 2023, 25, 2846. |
/
| 〈 |
|
〉 |