综述与进展

可见光催化有机硅的合成研究进展

  • 陈凤娟 ,
  • 刘罗 ,
  • 张子露 ,
  • 曾伟
展开
  • 华南理工大学化学与化工学院 广州 510640

收稿日期: 2023-06-30

  修回日期: 2023-08-31

  网络出版日期: 2023-09-08

基金资助

国家自然科学基金(22271100)

Recent Progress in Synthesis of Organosilanes Driven by Visible-Light

  • Fengjuan Chen ,
  • Luo Liu ,
  • Zilu Zhang ,
  • Wei Zeng
Expand
  • School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640

Received date: 2023-06-30

  Revised date: 2023-08-31

  Online published: 2023-09-08

Supported by

National Natural Science Foundation of China(22271100)

摘要

硅杂化合物广泛存在于药物分子和具有特殊用途的功能材料中. 与其同主族的全碳母体化合物相比, 通常硅元素的存在赋予了相应的硅杂化合物特殊的生物活性和独特的物理化学性能. 概述了近年来可见光催化有机硅的合成方法和策略, 并对其反应机理和局限性予以分析和讨论.

本文引用格式

陈凤娟 , 刘罗 , 张子露 , 曾伟 . 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023 , 43(10) : 3454 -3469 . DOI: 10.6023/cjoc202306028

Abstract

Silahydrocarbons are often encountered in pharmaceuticals and material chemistry. In comparison with all-carbon parent compounds, carbon/silicon switch generally endows the corresponding compounds with different biological activity and physical-chemical properties. In this review, the methods and strategies of synthesis of organosilanes by photoredox in recent years are reviewed, and the corresponding reaction mechanisms and limitations are discussed.

参考文献

[1]
F?rster B.; Bertermann R.; Kraft P.; Tacke R. Organometallics 2014, 33, 338.
[2]
Allred A. L.; Rochow E. G. J. Inorg. Nucl. Chem. 1958, 5, 264.
[3]
(a) Shen L.; Zhao K.; Doitomi K.; Ganguly R.; Li Y.-X.; Shen Z.-L.; Hirao H.; Loh T.-P. J. Am. Chem. Soc. 2017, 139, 13570.
[3]
(b) Breit N. C.; Szilvasi T.; Suzuki T.; Gallego D.; Inoue S. J. Am. Chem. Soc. 2013, 135, 17958.
[4]
(a) Akiyama T.; Imazeki S. Chem. Lett. 1997, 10, 1077.
[4]
(b) Fleming I.; Winter S. B. D. J. Chem. Soc., Perkin Trans. 1 1998, 2687.
[5]
(a) Chen X.; Li M. K.; Liu Z. P.; Yang C.; Xie H.; Hu X.; Su S.-J.; Jiang H.; Zeng W. Org. Lett. 2021, 23, 6724.
[5]
(b) Pawley S. B.; Conner A. M.; Omer H. M.; Watson D. A. ACS Catal. 2022, 12, 13108.
[5]
(c) Nakajimaa Y.; Shimada S. RSC Adv. 2015, 5, 20603.
[5]
(d) Ren L. Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400.
[5]
(e) Yang X. H.; Gao H. W.; Yan J. L.; Shi L. Chin. J. Org. Chem. 2022, 42, 4122 (in Chinese).
[5]
(杨惜晖, 高皓炜, 闫甲乐, 史雷, 有机化学, 2022, 42, 4122.)
[6]
(a) Albini A.; Fagnoni M. Photochemically Generated Intermediates in Synthesis Wiley, Hoboken, 2013.
[6]
(b) Brook A. G. In The Chemistry of Organic Silicon Compounds, Vol. 2, Eds.: Rappoport, Z.; Apeloig, Y., Wiley, New York, 1998, p. 1233.
[6]
(c) Steinmetz M. G. Chem. Rev. 1995, 95, 1527.
[6]
(d) Brix T.; Bastian E.; Potzinger P. J. J. Photochem. Photobiol. A 1989, 49, 287.
[7]
Matsumoto A.; Ito Y. J. Org. Chem. 2000, 65, 5707.
[8]
Chatgilialoglu C.; Ingold K. U.; Scaiano J. C.; Woynar H. J. Am. Chem. Soc. 1981, 103, 3231.
[9]
(a) Chatgilialoglu C.; Scaiano J. C.; Ingold K. U. Organometallics 1982, 1, 466.
[9]
(b) Lalev|e J.; Allonas X.; Fouassier J. P. J. Org. Chem. 2007, 72, 6434.
[10]
(a) Lykakis I. N.; Evgenidou E.; Orfanopoulos M. Curr. Org. Chem. 2012, 16, 2400.
[10]
(b) Hill C. L. J. Mol. Catal. A 2007, 262, 2.
[10]
(c) Renneke R. F.; Hill C. L. J. Am. Chem. Soc. 1986, 108, 3528.
[11]
(a) Fagnoni M.; Dondi D.; Ravelli D.; Albini A. Chem. Rev. 2007, 107, 2725.
[11]
(b) Ravelli D.; Dondi D.; Fagnoni M.; Albini A. Chem. Soc. Rev. 2009, 38, 1999.
[12]
(a) Dondi D.; Fagnoni M.; Albini A. Chem. Eur. J. 2006, 12, 4153.
[12]
(b) Tzirakis M. D.; Orfanopoulos M. J. Am. Chem. Soc. 2009, 131, 406.
[12]
(c) Tzirakis M. D.; Orfanopoulos M. Angew. Chem., Int. Ed. 2010, 49, 5891.
[12]
(d) Qrareya H.; Ravelli D.; Fagnoni M.; Albini A. Adv. Synth. Catal. 2013, 355, 2891.
[13]
Ryu I.; Tani A.; Fukuyama T.; Ravelli D.; Montanaro S.; Fagnoni M. Org. Lett. 2013, 15, 2554.
[14]
Halperin S. D.; Fan H.; Chang S.; Martin R. E.; Britton R. Angew. Chem., Int. Ed. 2014, 53, 4690.
[15]
Laleve J.; Blanchard N.; Tehfe M.-A.; Fouassier J. P. Macromol. Rapid. Commun. 2011, 32, 838.
[16]
Qrareya H.; Dondi D.; Ravelli D.; Fagnoni M. ChemCatChem 2015, 7, 3350.
[17]
(a) Capaldo L.; Ravelli D. Eur. J. Org. Chem. 2017, 2056.
[17]
(b) Protti S.; Fagnoni M.; Ravelli D. ChemCatChem 2015, 7, 1516.
[17]
(c) Ravelli D.; Dondi D.; Fagnoni M.; Albini A. Chem. Soc. Rev. 2009, 38, 1999.
[17]
(d) Fagnoni M.; Dondi D.; Ravelli D.; Albini A. Chem. Rev. 2007, 107, 2725.
[18]
(a) Salamone M.; Bietti M. Acc. Chem. Res. 2015, 48, 2895.
[18]
(b) Roberts B. P. Chem. Soc. Rev. 1999, 28, 25.
[19]
(a) Le C.; Liang Y.; Evans R. W.; Li X.; MacMillan D. W. C. Nature 2017, 547, 79.
[19]
(b) Shaw M. H.; Shurtleff V. W.; Terrett J. A.; Cuthbertson J. D.; MacMillan D. W. C. Science 2016, 352, 1304.
[19]
(c) Jeffrey J. L.; Terrett J. A.; MacMillan D. W. C. Science 2015, 349, 1532.
[20]
Zhou R.; Goh Y. Y.; Liu H.; Tao H.; Li L.; Wu J. Angew. Chem., Int. Ed. 2017, 56, 16621.
[21]
Zhu J.; Cui W.-C.; Wang S. Z.; Yao Z.-J. J. Org. Chem. 2018, 83, 14600.
[22]
Cai Y. Y.; Zhao W. X.; Wang S. Z.; Liang T.; Yao Z. J. Org. Lett. 2019, 21, 9836.
[23]
Luo C.; Lu W.-H.; Wang G.-Q.; Zhang Z.-B.; Li H.-Q.; Han P.; Yang D.; Jing L.-H.; Wang C. J. Org. Chem. 2022, 87, 3567.
[24]
(a) Yamamoto Y. Chem. Rev. 2012, 112, 4736.
[24]
(b) Felix R. J.; Munro-Leighton C.; Gagne M. R. Acc. Chem. Res. 2014, 47, 2319.
[24]
(c) Widenhoefer R. A. Acc. Chem. Res. 2002, 35, 905.
[24]
(d) Ojima I.; Tzamarioudaki M.; Li Z.; Donovan R. J. Chem. Rev. 1996, 96, 635.
[24]
(e) Malacria M. Chem. Rev. 1996, 96, 289.
[24]
(f) Curran D. P. In Comprehensive Organic Synthesis, Vol. 4, Eds.: Trost, B. M.; Fleming, I.; Semmelhack, M. F., Pergamon, Oxford, 1991, pp. 818-827.
[25]
(a) Beckwith A. L. J.; Schiesser C. H. Tetrahedron Lett. 1985, 26, 273.
[25]
(b) Spellmeyer D. C.; Houk K. N. J. Org. Chem. 1987, 52, 959.
[26]
Cui W.-C.; Zhao W. X.; Gao M. Liu W.; Wang S. Z.; Liang Y.; Yao Z.-J. Chem. Eur. J. 2019, 25, 16506.
[27]
Hou H.; Xu Y.; Yang H. B.; Chen X. Y.; Yan C. G.; Shi Y. C.; Zhu S. Q. Org. Lett. 2020, 22, 1748.
[28]
(a) Hou J.; Ee A.; Cao H.; Ong H.-W.; Xu J.-H.; Wu J. Angew. Chem., Int. Ed. 2018, 57, 17220.
[28]
(b) Yu W. L.; Luo Y. C.; Yan L.; Liu D.; Wang Z. Y.; Xu P. F. Angew. Chem., Int. Ed. 2019, 58, 10941.
[29]
Zhang Z. K.; Hu X. L. ACS Catal. 2020, 10, 777.
[30]
Neogi S.; Ghosh A. K.; Mandal S.; Ghosh D.; Ghosh S.; Hajra A. Org. Lett. 2021, 23, 6510.
[31]
(a) Fried J.; Sabo E. J. Am. Chem. Soc. 1954, 76, 1455.
[31]
(b) Inoue M.; Sumii Y.; Shibata N. ACS Omega 2020, 5, 10633.
[31]
(c) Ogawa Y.; Tokunaga E.; Kobayashi O.; Hirai K.; Shibata N. iScience 2020, 23, 101467.
[32]
(a) Moore W. R.; Schatzman G. L.; Jarvi E. T.; Gross R. S.; McCarthy J. R. J. Am. Chem. Soc. 1992, 114, 360.
[32]
(b) Lim M. H.; Kim H. O.; Moon H. R.; Chun M. W.; Jeong L. S. Org. Lett. 2002, 4, 529.
[32]
(c) Pan Y.; Qiu J.; Silverman R. B. J. Med. Chem. 2003, 46, 5292.
[33]
(a) Barroso G.; Li Q.; Bordia R. K.; Motz G. J. Mater. Chem. A 2019, 7, 1936.
[33]
(b) Deyko G. S.; Glukhov L. M.; Kustov L. M. Int. J. Hydrogen Energy 2020, 45, 33807.
[33]
(c) Guillot S. L.; Usrey M. L.; Pen?a-Hueso A.; Kerber B. M.; Zhou L.; Du P.; Johnson T. J. Electrochem. Soc. 2021, 168, 030533.
[34]
Yue F. Y.; Liu J. H.; Ma H.; Liu Y. X.; Dong J. Y.; Wang Q. M. Org. Lett. 2022, 24, 4019.
[35]
Luo C.; Zhou Y.; Chen H.; Wang T.; Zhang Z.-B.; Han P.; Jing L.-H. Org. Lett. 2022, 24, 4286.
[36]
(a) Chan T. H.; Fleming I. Synthesis 1979, 761.
[36]
(b) Blumenkopf T. A.; Overman L. E. Chem. Rev. 1986, 86, 857.
[36]
(c) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
[36]
(d) Fleming I.; Barbero A.; Walter D. Chem. Rev. 1997, 97, 2063.
[36]
(e) Curtis-Long M. J.; Aye Y. Chem.-Eur. J. 2009, 15, 5402.
[36]
(f) Szudkowska-Fra?tczak J.; Hreczycho G.; Pawluc? P. Org. Chem. Front. 2015, 2, 730.
[37]
(a) Albini A.; Fagnoni M. Hydrosilylation: A Comprehensive Review on Recent Advances, Springer, Berlin, 2009.
[37]
(b) Trost B. M.; Ball Z. T. Synthesis 2005, 853.
[37]
(c) Lim D. S. W.; Anderson E. A. Synthesis 2012, 44, 983.
[37]
(d) Sun J.; Deng L. ACS Catal. 2016, 6, 290.
[38]
Zhu J.; Cui W.-C.; Wang S. Z.; Yao Z.-J. Org. Lett. 2018, 20, 3174.
[39]
Liang H.; Ji Y.-X.; Wang R.-H.; Zhang Z.-H.; Zhang B. Org. Lett. 2019, 21, 2750.
[40]
For selected reviews, please see: (b) Pooni P. K.; Showell G. A. Mini-Rev. Med. Chem. 2006, 6, 1169.
[40]
(b) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
[40]
(c) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
[41]
(a) Denmark S. E.; Kallemeyn J. M. Org. Lett. 2003, 5, 3483.
[41]
(b) Hamze A.; Provot O.; Alami M.; Brion J.-D. Org. Lett. 2006, 8, 931.
[41]
(c) Guo L.; Chatupheeraphat A.; Rueping M. Angew. Chem., Int. Ed., 2016, 55, 11810.
[42]
(a) Toutov A. A. Liu W.-B.; Betz K. N.; Fedorov A. Stoltz B. M.; Grubbs R. H. Nature 2015, 518, 80.
[42]
(b) Liu W.-B.; Schuman D. P.; Yang Y.-F.; Toutov A. A.; Liang Y.; Klare H. F. T.; Nesnas N.; Oestreich M.; Blackmond D. G.; Virgil S. C.; Banerjee S.; Zare R. N.; Grubbs R. H.; Houk K. N.; Stoltz B. M. J. Am. Chem. Soc. 2017, 139, 6867.
[43]
Liu S. H.; Pan P.; Fan H. Q.; Li H.; Wang W.; Zhang Y. Q. Chem. Sci. 2019, 10, 3817.
[44]
Yang C.; Wang J.; Li J. H.; Ma W. C.; An K.; He W.; Jiang C. Adv. Synth. Catal. 2018, 360, 3049.
[45]
(a) Yu M. M.; Jing H. Z.; Liu X.; Fu X. F. Organometallics 2015, 34, 5754.
[45]
(b) Urayama T.; Mitsudome T.; Maeno Z.; Mizugaki T.; Jitsukawa K.; Kaneda K. Chem. Lett. 2015, 44, 1062.
[45]
(c) Lin J.-D.; Bi Q.-Y.; Tao L.; Jiang T.; Liu Y.-M.; He H.-Y.; Cao Y.; Wang Y.-D. ACS Catal. 2017, 7, 1720.
[46]
Rammal F.; Gao D.; Boujnah S.; Hussein A. A.; Laleve?e J.; Gaumont A.-C.; Morlet-Savary F.; Lakhdar S. ACS Catal. 2020, 10, 13710.
[47]
Dai C. H.; Zhan Y. L.; Liu P.; Sun P. P. Green Chem. 2021, 23, 314.
[48]
Zhang W. J.; Lu Q.; Wang M. S.; Zhang Y. J.; Xia X.-F.; Wang D. W. Org. Lett. 2022, 24, 3797.
[49]
(a) Mizuno K. Tetrahedron Lett. 1989, 30, 3689.
[49]
(b) Kako M.; Morita T.; Torihara T.; Nakadaira Y. J. Chem. Soc., Chem. Commun. 1993, 1993, 678.
[49]
(c) Mizuno K.; Nakanishi K.; Chosa J. I.; Otsuji Y. J. Organomet. Chem. 1994, 473, 35.
[50]
Liu R. F.; Chia S. P. M.; Goh Y. Y.; Cheo H. W.; Fan B. B.; Li R. F.; Zhou R.; Wu J. Eur. J. Org. Chem. 2020, 1459.
[51]
Yu X. Y.; Lübbesmeyer M.; Studer A. Angew. Chem., Int. Ed. 2021, 60, 675.
[52]
Yu X. Y.; Daniliuc C. G.; Alasmary F. A; Studer A. Angew. Chem., Int. Ed. 2021, 60, 23335.
[53]
Matsumoto A.; Ito A. J. Org. Chem. 2000, 65, 5707.
[54]
Zhong M.; Pannecoucke X.; Jubault P.; Poisson T. Chem. - Eur. J. 2021, 27, 11818.
[55]
Takemura N.; Sumida Y.; Ohmiya H. ACS Catal. 2022, 12, 7804.
[56]
Xu N. X.; Li B. X.; Wang C.; Uchiyama M. Angew. Chem., Int. Ed. 2020, 59, 10639.
[57]
Chen F. J.; Shao Y. X.; Li M. K.; Yang C.; Su S. J.; Jiang H. F.; Ke Z. F.; Zeng W. Nat. Commun. 2021, 12, 3304.
[58]
Iwamoto T.; Sato K.; Ishida S.; Kabuto C.; Kira M. J. Am. Chem. Soc. 2006, 128, 16914.
[59]
Tang Z.; Chen F. J.; Huang G. J.; Li Y. K.; Jiang H. F.; Zeng W. Org. Lett. 2023, 25, 2846.
文章导航

/