铜催化双炔膦氧化物硅质子化反应合成β-硅基取代的乙烯基膦氧化物
收稿日期: 2023-07-31
修回日期: 2023-09-06
网络出版日期: 2023-09-08
基金资助
国家自然科学基金(21871240); 及中央高校基本科研业务费专项资金(WK2060000017)
Regioselective Synthesis of β-Silyl-Substituted Vinylphosphine Oxides via Copper-Catalyzed Protosilylation of Dialkynylphosphine Oxides
Received date: 2023-07-31
Revised date: 2023-09-06
Online published: 2023-09-08
Supported by
National Natural Science Foundation of China(21871240); Fundamental Research Funds for the Central Universities(WK2060000017)
陈志远 , 杨梦维 , 徐建林 , 徐允河 . 铜催化双炔膦氧化物硅质子化反应合成β-硅基取代的乙烯基膦氧化物[J]. 有机化学, 2023 , 43(10) : 3598 -3607 . DOI: 10.6023/cjoc202307030
A copper-catalyzed mono-lateral protosilylation of dialkynylphosphine oxides for the synthesis of β-silyl substituted vinylphosphine oxides is described. Various (hetero)aryl and alkyl-substituted diynes afforded the corresponding products in moderate and high yields with high chemoselectivity. An alternative alkynyl functional group of products could also be further derived.
| [1] | (a) Yamada M.; Honma I. Polymer 2005, 46, 2986. |
| [1] | (b) Ajellal N.; Thomas C. M.; Carpentier J.-F. Polymer 2008, 49, 4344. |
| [1] | (c) Macarie L.; Ilia G. Prog. Polym. Sci. 2010, 35, 1078. |
| [1] | (d) Li Y.; Josowicz M.; Tolbert L. M. J. Am. Chem. Soc. 2010, 132, 10374. |
| [2] | (a) Bialy L.; Waldmann H. Angew. Chem., Int. Ed. 2005, 44, 3814. |
| [2] | (b) Kumar T. S.; Zhou S.-Y.; Joshi B. V.; Balasubramanian R.; Yang T.; Liang B.-T.; Jacobson K. A. J. Med. Chem. 2010, 53, 2562. |
| [2] | (c) Sivendran S.; Jones V.; Sun D.; Wang Y.; Grzegorzewicz A. E.; Scherman M. S.; Napper A. D.; McCammon J. A.; Lee R. E.; Diamond S. L.; McNeil M. Bioorg. Med. Chem. 2010, 18, 896. |
| [2] | (d) Horsman G. P.; Zechel D. L. Chem. Rev. 2017, 117, 5704. |
| [2] | (e) Gao M.; Liu H.; Lian Y.; Gao X.; Geng Y.; Li W. Chin. J. Org. Chem. 2019, 39, 974. |
| [3] | (a) Russell G. A.; Yao C.-F.; Tashtoush H. I.; Russell J. E.; Dedolph D. F. J. Org. Chem. 1991, 56, 663. |
| [3] | (b) Enders D.; Wahl H.; Papadopoulos K. Tetrahedron 1997, 53, 12961. |
| [3] | (c) Kouno R.; Okauchi T.; Nakamura M.; Ichikawa. J.; Minami T. J. Org. Chem. 1998, 63, 6239. |
| [3] | (d) Kouno R.; Tsubota T.; Okauchi. T.; Minami T. J. Org. Chem. 2000, 65, 4326. |
| [3] | (e) Fernández-Pérez H.; Etayo P.; Panossian A.; Vidal-Ferran A. Chem. Rev. 2011, 111, 2119. |
| [3] | (f) Dutartre M.; Bayardon J.; Jugé S. Chem. Soc. Rev. 2016, 45, 5771. |
| [4] | For selected papers on hydrophosphorylation of alkynes, see: (a) Han L.-B.; Tanaka M. J. Am. Chem. Soc. 1996, 118, 1571. |
| [4] | (b) Takaki K.; Takeda M.; Koshoji G.; Shishido T.; Takehira K. Tetrahedron Lett. 2001, 42, 6357. |
| [4] | (c) Zhao C.-Q.; Han L.-B.; Goto M.; Tanaka M. Angew. Chem., Int. Ed. 2001, 40, 1929. |
| [4] | (d) Han L.-B.; Zhang C.; Yazawa H.; Shimada S. J. Am. Chem. Soc. 2004, 126, 5080. |
| [4] | (e) Nune S. K.; Tanaka M. Chem. Commun. 2007, 27, 2858. |
| [4] | (f) Han L.-B.; Ono Y.; Shimada S. J. Am. Chem. Soc. 2008, 130, 2752. |
| [4] | (g) Ananikov V. P.;. Khemchyan L. L; Beletskaya I. P.; Starikova Z. A. Adv. Synth. Catal. 2010, 352, 2979. |
| [4] | (h) Fadel A.; Legrand F.; Evano G.; Rabasso N. Adv. Synth. Catal. 2011, 353, 263. |
| [4] | (i) Khemchyan L. L.; Ivanova J. V.; Zalesskiy S. S.; Ananikov V. P.; Beletskaya I. P.; Starikova Z. A. Adv. Synth. Catal. 2014, 356, 771. |
| [4] | (j) Braun R. A.; Bradfield J. L.; Henderson C. B.; Mobarrez N.; Sheng Y.; O'Brien R. A.; Stenson A. C.; Davis J. H.; Mirjafari A. Green Chem. 2015, 17, 1259. |
| [4] | (k) Fortunato L.; Moglie Y.; Dorn V.; Radivoy G. RSC Adv. 2017, 7, 18707. |
| [4] | (l) Islas R. E.; García J. J. ChemCatChem 2017, 9, 4125. |
| [4] | (m) Chen T.; Zhao C.-Q.; Han L.-B. J. Am. Chem. Soc. 2018, 140, 3139. |
| [4] | (n) Huang H.; Zhu H.; Kang J. Y. Org. Lett. 2018, 20, 2778. |
| [4] | (o) Yang Z.; Gu X.;. Han L.-B; Wang J. Chem. Sci. 2020, 11, 7451. |
| [4] | (p) Liu X.-T.; Han X.-Y.; Wu Y.; Sun Y.-Y.; Gao L.; Huang Z.; Zhang Q.-W. J. Am. Chem. Soc. 2021, 143, 11309. |
| [4] | (q) Qian D.-W.; Yang J.; Wang G.-W.; Yang S.-D. J. Org. Chem. 2023, 88, 3539. |
| [4] | (r) Wang W.-H.; Wu Y.; Qi P.-J.; Zhang Q.-W. ACS Catal. 2023, 13, 6994. |
| [5] | (a) Mulla K.; Aleshire K. L.; Forster P. M.; Kang J. Y. J. Org. Chem. 2016, 81, 77. |
| [5] | (b) Kwak S.; Choi J.; Han J.; Lee S. Y. ACS Catal. 2022, 12, 212. |
| [6] | For selected papers on the transformation of functionalized alkenes via cross-coupling, see: (a) Hirao T.; Masunaga T.; Yamada N.; Ohshiro Y.; Agawa T. Bull. Chem. Soc. Jpn. 1982, 55, 909. |
| [6] | (b) Kabalka G. W.; Guchhait S. K. Org. Lett. 2003, 5, 729. |
| [6] | (c) Thielges S.; Bisseret P.; Eustache J. Org. Lett. 2005, 7, 681. |
| [6] | (d) Evano G.; Tadiparthi K.; Couty F. Chem. Commun. 2011, 47, 179. |
| [6] | (e) Hu J.; Zhao N.; Yang B.; Wang G.; Guo L.-N.; Liang Y.-M.; Yang S.-D. Chem.-Eur. J. 2011, 17, 5516. |
| [6] | (f) Liu L.; Wang Y.; Zeng Z.; Xu P.; Gao Y.; Yin Y.; Zhao Y. Adv. Synth. Catal. 2013, 355, 659. |
| [6] | (g) Liu L. L.; Lv Y.; Wu Y.; Gao X.; Zeng Z.; Gao Y.; Tang G.; Zhao Y. RSC Adv. 2014, 4, 2322. |
| [6] | (h) Li X.; Yang F.; Wu Y.; Wu Y. Org. Lett. 2014, 16, 992. |
| [6] | (i) Hu G.; Gao Y.; Zhao Y. Org. Lett. 2014, 16, 4464. |
| [6] | (j) Wu Y.; Liu L. L.; Yan K.; Xu P.; Gao Y.; Zhao Y. J. Org. Chem. 2014, 79, 8118. |
| [6] | (k) Xue J.-F.; Zhou S.-F.; Liu Y.-Y.; Pan X.; Zou J.-P.; Asekun O. T. Org. Biomol. Chem. 2015, 13, 4896. |
| [6] | (l) Yuan J.-W.; Yang L.-R.; Mao P.; Qu L.-B. RSC Adv. 2016, 6, 87058. |
| [6] | (m) Tang L.; Wen L.; Sun T.; Zhang D.; Yang Z.; Feng C.; Wang Z. Asian J. Org. Chem. 2017, 6, 1683. |
| [6] | (n) Liu L.; Zhou D.; Dong J.; Zhou Y.; Yin S.-F.; Han L.-B. J. Org. Chem. 2018, 83, 4190. |
| [6] | (o) Liu T.; Wei L.; Zhao B.; Liu Y.; Wan J.-P. J. Org. Chem. 2021, 86, 9861. |
| [6] | (p) Lu X.-Y.; Pan H.-Y.; Huang R.; Yang K.; Zhang X.; Wang Z.-Z.; Tao Q.-Q.; Yang G.-X.; Wang X.-J.; Zhou H.-P. Org. Lett. 2023, 25, 2476. |
| [7] | For selected papers on transformation of functionalized alkenes via radical way, see: (a) Mao L.-L; Zhou A.-X.; Liu N.; Yang S.-D. Synlett 2014, 25, 2727. |
| [7] | (b) Gui Q.; Hu L.; Chen X.; Liu J.; Tan Z. Chem. Commun. 2015, 51, 13922. |
| [7] | (c) Gu J.; Cai C. Org. Biomol. Chem. 2017, 15, 4226. |
| [7] | (d) Shen J.; Yu R.-X.; Luo Y.; Zhu L.-X.; Zhang Y.; Wang X.; Xiao B.; Cheng J.-B.; Yang B.; Li G.-Z. Eur. J. Org. Chem. 2019, 10, 2065. |
| [7] | (e) Xu Y.; Zhou X.; Chen L.; Ma Y.; Wu G. Org. Chem. Front. 2022, 9, 2471. |
| [8] | (a) Wei X.-H.; Bai C.-Y.; Zhao L.-B.; Zhang P.; Li Z.-H.; Wang Y.-B.; Su Q. Chin. J. Chem. 2021, 39, 1855. |
| [8] | (b) Xin N.; Lv Y.; Lian Y.; Lin Z.; Huang X.-Q.; Zhao C.-Q.; Wang Y. J. Org. Chem. 2023, 88, 2898. |
| [9] | Dziuba K.; Frynas S.; Szwaczko K. Synthesis 2021, 53, 2142. |
| [10] | (a) Houk K.; Hopf H.; Stang P.; Nicholas K. M.; Schore N.; Regitz M.; Nicolaou K. C.; Gleiter R.; Scott L.; Grubbs R.; Iwamura H.; Moore J.; Diederich F. Modern Acetylene Chemistry, Eds.: Stang, P. J.; Diederich, F., Wiley-VCH: Weinheim, Germany, New York, 2008. |
| [10] | (b) Trost B. M.; Genet J.-P.; Toullec P. Y.; Michelet V.; Fürstner A.; Schoffelen S.; Uhlig N.; Chinchilla R. Modern Alkyne Chemistry: Catalytic and Atom-economic Transformations, Eds.: Trost, B. M.; Li, C.-J., Wiley-VCH: Weinheim, Germany, New York, 2015. |
| [11] | (a) Gil J. M.; Oh D. Y. J. Org. Chem. 1999, 64, 2950. |
| [11] | (b) Braga A. L.; Alves E. F.; Silveira C. C.; Andrade L. H. ; Tetrahedron Lett. 2000, 41, 161. |
| [11] | (c) Braga A. L.; Andrade L. H.; Silveira C. C.; Moro A. V.; Zeni G. Tetrahedron Lett. 2001, 42, 8563. |
| [11] | (d) Braga A. L.; Vargas F.; Zeni G.; Silveira C. C.; Andrade L. H. Tetrahedron Lett. 2002, 43, 4399. |
| [11] | (e) Quntar A. A. A. A.; Dembitsky V. M.; Srebnik M. Org. Lett. 2003, 5, 357. |
| [11] | (f) Quntar A. A. A.; Srebnik M. Chem. Commun. 2003, 1, 58. |
| [11] | (g) Huang X.; Xu L. Synthesis 2006, 2, 231. |
| [11] | (h) Kondoh A.; Yorimitsu H.; Oshima K. Chem. Asian. J. 2010, 5, 398. |
| [11] | (i) Fopp C.; Isaac K.; Romain E.; Chemla F.; Ferreira F.; Jackowski O.; Oestreich M.; Perez-Luna A. Synthesis 2017, 49, 724. |
| [11] | (j) Zheng Y.; Guo L.; Zi W. Org. Lett. 2018, 20, 7039. |
| [11] | (k) Zhang Y.; Zhang F.; Chen L.; Xu J.; Liu X.; Feng X. ACS Catal. 2019, 9, 4834. |
| [12] | (a) Mortensen M.; Husmann R.; Veri E.; Bolm C. Chem. Soc. Rev. 2009, 38, 1002. |
| [12] | (b) Franz A. K. Wilson S. O. J. Med. Chem. 2013, 56, 388. |
| [12] | (c) Re?mond E.; Martin C.; Martinez J.; Cavelier F. Chem. Rev. 2016, 116, 11654. |
| [12] | (d) Fujii S.; Hashimoto Y. Future Med. Chem. 2017, 9, 485. |
| [12] | (e) Barraza S. J.; Denmark S. E. J. Am. Chem. Soc. 2018, 140, 6668. |
| [12] | (f) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779. |
| [13] | For selected reviews and papers on the transformation of silylboronates, see: (a) Suginome M.; Nakamura H.; Ito Y.; Chem. Commun. 1996, 2777. |
| [13] | (b) Ohmura T.; Suginome M. Bull. Chem. Soc. Jpn. 2009, 82, 29. |
| [13] | (c) Oestreich M.; Hartmann E.; Mewald M. Chem. Rev. 2013, 113, 402. |
| [13] | (d) Hoveyda A. H.; Wu H.; Radomkit S.; Garcia J. M.; Haeffner F.; Lee K.-S. Activation of B-B and B-Si Bonds and Synthesis of Organoboron and Organosilicon Compounds through Lewis Base-Catalyzed Transformations (n→n*) in Lewis Base Catalysis in Organic Chemistry, Eds.: Vedejs, E.; Denmark, S. E., Wiley-VCH: Weinheim, Germany: 2016; Vol. 3. |
| [13] | (e) Feng J.-J.; Mao W.; Zhang L.; Oestreich M. Chem. Soc. Rev. 2021, 50, 2010. |
| [13] | (f) Han B.; Li W.; Chen S.; Zhang Z.; Zhao X.; Zhang Y.; Zhu L. Chin. J. Org. Chem. 2023, 43, 555. |
| [14] | For selected recent examples on constructing the silicon-containing compounds reported by our group, see: (a) Wang M.; Liu Z.-L.; Zhang X.; Tian P.-P.; Xu Y.-H.; Loh T.-P. J. Am. Chem. Soc. 2015, 137, 14830. |
| [14] | (b) Liu Z.-L.; Yang C.; Xue Q.-Y.; Zhao M.; Shan C.-C.; Xu Y.-H.; Loh T.-P. Angew. Chem., Int. Ed. 2019, 58, 16538. |
| [14] | (c) Yang C.; Liu Z.-L.; Dai D.-T.; Li Q.; Ma W.-W.; Zhao M.; Xu Y.-H. Org. Lett. 2020, 22, 1360. |
| [14] | (d) Li Q.; Wang Z.-L.; Lu H.-X.; Xu Y.-H. Org. Lett. 2022, 24, 2832. |
| [14] | (e) Li Q.; Wang Z.-L.; Xu Y.-H. Chin. Chem. Lett. 2023, 108150. |
| [14] | (f) Qian Y.-S.; Wang Z.-L.; Jiang B.; Xiao Z.-Y.; Xu Y.-H. Org. Lett. 2023, 25, 3364. |
| [15] | For representative papers on the protosilylation of alkynes, see: (a) Wang P.; Yeo X.-L.; Loh T.-P. J. Am. Chem. Soc. 2011, 133, 1254. |
| [15] | (b) Calderone J. A.; Santos W. L. Angew. Chem., Int. Ed. 2014, 53, 4154. |
| [15] | (c) Hazra C. K.; Fopp C.; Oestreich M. Chem. Asian. J. 2014, 9, 3005. |
| [15] | (d) Xu Y.-H.; Wu L.-H.; Wang J.; Loh T.-P. Chem. Commun. 2014, 50, 7195. |
| [15] | (e) Xuan Q.-Q.; Ren C.-L.; Liu L.; Li C.-J. Org. Biomol. Chem. 2015, 13, 5871. |
| [15] | (f) Garcia-Rubia A.; Romero-Revilla J. A.; Mauleon P.; Arrayás R. G.; Carretero J. C. J. Am. Chem. Soc. 2015, 137, 6857. |
| [15] | (g) Vercruysse S.; Jouvin K.; Riant O.; Evano G. Synthesis 2016, 48, 3373. |
/
| 〈 |
|
〉 |