研究论文

3-Pyrrolyl BODIPY的绿色生物合成、光物理性质及应用研究

  • 马翠云 ,
  • 罗海澜 ,
  • 张福华 ,
  • 郭丹 ,
  • 陈树兴 ,
  • 王飞
展开
  • a 漯河医学高等专科学校 河南省营养与健康工程研究中心 河南漯河 462002
    b 中原食品实验室 河南漯河 462333
共同第一作者.

收稿日期: 2023-04-20

  修回日期: 2023-07-11

  网络出版日期: 2023-09-15

基金资助

2020年中央引导地方科技发展专项; 河南省科技攻关(232102310335); 漯河医学高等专科学校科技(2015-S-LMC013); 漯河医学高等专科学校科技(2020-LYZKYZD007); 漯河医学高等专科学校科技(2021LYZKJXM017); 漯河医学高等专科学校科技(2022KJZD11); 漯河医学高等专科学校科技(2019-LYZTD003)

Green Biosynthesis, Photophysical Properties and Application of 3-Pyrrolyl BODIPY

  • Cuiyun Ma ,
  • Hailan Luo ,
  • Fuhua Zhang ,
  • Dan Guo ,
  • Shuxing Chen ,
  • Fei Wang
Expand
  • a Henan Engineering Research Center of Nutrition & Health, Luohe Medical College, Luohe, Henan 462002
    b Food Laboratory of Zhongyuan, Luohe, Henan 462333
The authors contributed equally to this work.

Received date: 2023-04-20

  Revised date: 2023-07-11

  Online published: 2023-09-15

Supported by

2020 Central Government and Guiding Local Science and Technology Development, the Science; Technology Project of Henan Province(232102310335); Project of Luohe Medical College(2015-S-LMC013); Project of Luohe Medical College(2020-LYZKYZD007); Project of Luohe Medical College(2021LYZKJXM017); Project of Luohe Medical College(2022KJZD11); Project of Luohe Medical College(2019-LYZTD003)

摘要

3-吡咯基氟硼二吡咯(3-Pyrrolyl BODIPYs)荧光染料的绿色合成与应用是值得进一步研究的重要问题. 到目前为止, 在所有的合成方法中, 都无法避免使用有毒的吡咯类有机化合物作为反应底物. 本研究使用一种微生物源天然色素, 沙雷氏菌y2的次级代谢产物灵菌红素, 来合成目标化合物. 利用灵菌红素天然的吡咯基甲川基结构, 合成了一种新的3-pyrrolyl BODIPY. 光物理性质实验表明其具有荧光成像的性能, 然后使用SW480细胞进行细胞染色探索. 激光共聚焦显微镜荧光成像结果显示其可在三通道中发射出不同强度的荧光, Z-stack结果揭示其红色通道与绿色通道中细胞穿透性可以达到266 μm. 细胞毒性实验也说明3-pyrrolyl BODIPY具有良好的生物相容性, 是一种值得开发的荧光染料.

本文引用格式

马翠云 , 罗海澜 , 张福华 , 郭丹 , 陈树兴 , 王飞 . 3-Pyrrolyl BODIPY的绿色生物合成、光物理性质及应用研究[J]. 有机化学, 2024 , 44(1) : 216 -223 . DOI: 10.6023/cjoc202304028

Abstract

The green synthesis and application of fluorescent dyes 3-pyrrolyl BODIPYs (dipyrromethene boron difluorides) are important issues worthy of further research. Up till now, toxic pyrrole organic compounds cannot be avoided as substrates in all synthetic methods. In this study, the target compound was synthesized by using prodigiosin—the secondary metabolites of Serratia marcescens y2, a natural pigment of microbial origin. A new 3-pyrrolyl BODIPY was synthesized from the natural pyrrole dimethyl subunit structure of prodigiosin. After the experiment of photophysical properties showed that it has the performance of fluorescence imaging, SW480 cells was used for fluorescent staining test. The fluorescence imaging results of Confocal laser microscopy indicated 3-pyrrolyl BODIPY can fluoresce in the three channels. The Z-stack results revealed that the cell penetration of 3-pyrrolyl BODIPY could reach 226 μm in blue and red channels. The results of SW480 live cyto- toxicity test also illustrated that 3-pyrrolyl BODIPY has good biocompatibility and is worth developing as a fluorescent dye.

参考文献

[1]
Rao, Y. Ph.D. Dissertation, Hunan Normal University, Changsha, 2020 (in Chinese).
[1]
(饶玉滔, 博士论文, 湖南师范大学,长沙, 2020.)
[2]
Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891.
[3]
(a) Lv, X.; Wu, Y.; Zhang, B.; Guo, W. Acta Chim. Sin. 2023, 81, 359 (in Chinese).
[3]
(吕鑫, 吴仪, 张勃然, 郭炜, 化学学报, 2023, 81, 359.)
[3]
(b) Liu, Z.; Dai, X.; Xu, Q.; Sun, X.; Liu, Y. 2021, 40, 493.
[3]
(c) Liu, B.; Wang, C.; Qian, Y. Acta Chim. Sinica 2022, 80, 1071 (in Chinese).
[3]
(刘巴蒂, 王承俊, 钱鹰, 化学学报, 2022, 80, 1071.)
[3]
(d) Liu, B.-K.; Teng, K.-X.; Niu, L.-Y.; Yang, Q.-Z. Chin. J. Org. Chem. 2022, 42, 1265 (in Chinese).
[3]
(刘斌凯, 滕坤旭, 牛丽亚, 杨清正, 有机化学, 2022, 42, 1265.)
[4]
Cheng, H. B.; Cao, X.; Zhang, S.; Zhang, K.; Cheng, Y.; Wang, J.; Zhao, J.; Zhou, L.; Liang, X. J.; Yoon, J. Adv. Mater. 2022, e2207546.
[5]
Ge, Y. X.; Zhuang, H. J.; Zhang, T. W.; Liang, H. F.; Ding, W.; Zhou, L.; Dong, Z. R.; Hu, Z. C.; Chen, Q.; Dong, J.; Jiang, L. B.; Yin, X. F. Mater. Today Bio 2023, 19, 100547.
[6]
Kashiwazaki, G.; Watanabe, R.; Nishikawa, A.; Kawamura, K.; Kitayama, T.; Hibi, T. RSC Adv. 2022, 12, 15083.
[7]
Bilgic, A.; Cimen, A.; Kursunlu, A. N.; Karap?nar, H. S. Microporous Mesoporous Mater. 2022, 330, 111600.
[8]
Miao, W.; Guo, X.; Yan, X.; Shang, Y.; Yu, C.; Dai, E.; Jiang, T.; Hao, E.; Jiao, L. Chemistry 2023, e202203832.
[9]
(a) Yu, C.; Miao, W.; Wang, J.; Hao, E.; Jiao, L. ACS Omega 2017, 2, 3551.
[9]
(b) Panchavarnam, S.; Thorat, K. G.; Ravikanth, M. Tetrahedron 2019, 75, 3371.
[10]
Miao, W.; Li, Z.; Yu, C.; Hao, E.; Jiao, L. J. Porphyrins Phthalocyanines 2021, 25, 1119.
[11]
Panchavarnam, S.; Sengupta, R.; Ravikanth, M. Dalton Trans. 2022, 51, 5587.
[12]
Pan, X.; Tang, M.; You, J.; Osire, T.; Sun, C.; Fu, W.; Yi, G.; Yang, T.; Yang, S.-T.; Rao, Z. Nucleic Acids Res. 2022, 50, 127.
[13]
John Jimtha, C.; Jishma, P.; Sreelekha, S.; Chithra, S.; Radhakrishnan, E. K. Rhizosphere 2017, 3, 105.
[14]
Suryawanshi, R. K.; Patil, C. D.; Borase, H. P.; Narkhede, C. P.; Salunke, B. K.; Patil, S. V. Pestic. Biochem. Physiol. 2015, 123, 49.
[15]
Nguyen, S. L. T.; Nguyen, T. C.; Do, T. T.; Vu, T. L.; Nguyen, T. T.; Do, T. T.; Nguyen, T. H. T.; Le, T. H.; Trinh, D. K.; Nguyen, T. A. T. Biomed Res. Int. 2022, 2022, 4053074.
[16]
Anitha, J.; Muthusankar, A.; Viswanathan, S.; Murugesan, P.; Gayathri, N. C.; Selvakumar, R.; Premkumar, T. Process Biochem. 2023, 126, 260.
[17]
(a) Majumdar, S.; Mandal, T.; Mandal, D. D. Int. J. Biol. Macromol. 2022, 222, 2966.
[17]
(b) Araujo, R. G.; Zavala, N. R.; Castillo-Zacarias, C.; Barocio, M. E.; Hidalgo-Vazquez, E.; Parra-Arroyo, L.; Rodriguez-Hernandez, J. A.; Martinez-Prado, M. A.; Sosa-Hernandez, J. E.; Martinez- Ruiz, M.; Chen, W. N.; Barcelo, D.; Iqbal, H. M. N.; Parra-Saldivar, R. Molecules 2022, 27, 4982.
[17]
(c) Amorim, L. F. A.; Mouro, C.; Riool, M.; Gouveia, I. C. Polymers (Basel) 2022, 14, 315.
[18]
Vijay, D.; Alshamsi, N. S.; Moussa, Z.; Akhtar, M. K. Molecules 2022, 27, 6030.
[19]
Araújo, R. G.; Zavala, N. R.; Castillo-Zacarías, C.; Barocio, M. E.; Hidalgo-Vázquez, E.; Parra-Arroyo, L.; Rodríguez-Hernández, J. A.; Martínez-Prado, M. A.; Sosa-Hernández, J. E.; Martínez-Ruiz, M.; Chen, W. N.; Barceló, D.; Iqbal, H. M. N.; Parra-Saldívar, R. Molecules 2022, 27, 4982.
[20]
(a) Khanam, B.; Chandra, R. Lett. Appl. Microbiol. 2018, 66, 194.
[20]
(b) Sajjad, W.; Ahmad, S.; Aziz, I.; Azam, S. S.; Hasan, F.; Shah, A. A. Mol. Biol. Rep. 2018, 45, 1787.
[21]
Liu, X.; Wang, Y.; Sun, S.; Zhu, C.; Xu, W.; Park, Y.; Zhou, H. Prep. Biochem. Biotechnol. 2013, 43, 271.
[22]
Marfin, Y. S.; Rumyantsev, E. V.; Antina, E. V. Russ. J. Inorg. Chem. 2011, 56, 749.
[23]
(a) Wang, W.; Tong, S.; Wang, Q. Q.; Ao, Y. F.; Wang, D. X.; Zhu, J. Chemistry 2022, 28, e202202507.
[23]
(b) Lebedev, Y.; Apte, C.; Cheng, S.; Lavigne, C.; Lough, A.; Aspuru-Guzik, A.; Seferos, D. S.; Yudin, A. K. J. Am. Chem. Soc. 2020, 142, 13544.
[23]
(c) He, J.; Rauch, F.; Finze, M.; Marder, T. B. Chem. Sci. 2021, 12, 128.
[24]
Colas, K.; Doloczki, S.; Posada Urrutia, M.; Dyrager, C. Eur. J. Org. Chem. 2021, 2021, 2133.
[25]
Wang, F.; Luo, H.; Song, G.; Liu, C.; Wang, J.; Xu, J.; Su, X.; Ma, X. Electron. J. Biotechn. 2013, 16, 1.
[26]
Xia, J. M.S. Thesis, Huaqiao University, Quanzhou, 2014 (in Chinese).
[26]
(夏九旭, 硕士论文, 华侨大学, 泉州, 2014.)
文章导航

/