基于硅烷化启动的环化反应研究进展
收稿日期: 2023-07-27
修回日期: 2023-09-09
网络出版日期: 2023-09-15
基金资助
国家自然科学基金(22271245); 国家自然科学基金(21964013); 河南师范大学化学化工学院开放研究基金(2021ZD01); 江西省自然科学基金(20224BAB213014); 江西省自然科学基金(20212BAB213025)
State-of-Art Advances on Silylation-Initiated Annulation Reactions
Received date: 2023-07-27
Revised date: 2023-09-09
Online published: 2023-09-15
Supported by
National Natural Science Foundation of China(22271245); National Natural Science Foundation of China(21964013); Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University(2021ZD01); Jiangxi Provincial Natural Science Foundation(20224BAB213014); Jiangxi Provincial Natural Science Foundation(20212BAB213025)
南宁 , 吴双 , 秦景灏 , 李金恒 . 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023 , 43(10) : 3414 -3453 . DOI: 10.6023/cjoc202307025
Organosilicon compounds are important monomers and useful organic molecules in many materials, and are widely used synthetic intermediates in chemical synthesis. Therefore, people have been working hard to develop new methods to construct silicon containing chemical bond, especially C—Si bonds. Since Sakurai and Imai reported the first palladium catalyzed cycloaddition reaction of silcyclobutane with acetylene in 1975, transition metal catalyzed silyl annulation has been developed rapidly. With the rapid development of free radical reactions, researchers have expanded them to the annulation reaction between organic silicon molecules, ushering in new developments in the annulation reaction of silicon. The transition metal catalyzed silylative annualtion reaction, free radical initiated silylative annualtion reaction, and C+ ion initiated silylative annualtion reaction are mainly discussed. Finally, a summary of the current research progress is described.
| [1] | (a) Feldman D. J. Polym. Sci., Part C: Polym. Lett. 1990, 28, 207. |
| [1] | (b) Steinmetz M. G. Chem. Rev. 1995, 95, 1527. |
| [1] | (c) Thomas M. J. K. Polym. Int. 2001, 50, 256. |
| [1] | (d) Marciniec B. Coord. Chem. Rev. 2005, 249, 2374. |
| [1] | (e) Molle A.; Grazianetti C.; Tao L.; Taneja D.; Alam M. H.; Akinwande D. Chem. Soc. Rev. 2018, 47, 6370. |
| [1] | (f) Kyushin S.; Kurosaki Y.; Otsuka K.; Imai H.; Ishida S.; Kyomen T.; Hanaya M.; Matsumoto H. Nat. Commun. 2020, 11, 4009. |
| [1] | (g) Li L.; Wei Y.-L.; Xu L.-W. Synlett 2020, 31, 21. |
| [2] | (a) Yamamoto Y. Chem. Rev. 2012, 112, 4736. |
| [2] | (b) Wang Y.; Attam A.; Fan H.; Zheng W.; Liu W. Small 2023, doi:10.1002/smll.202303804. |
| [3] | (a) Huang T.; Li T.; Wang J.; Qin G.; Xiao T. Chin. J. Org. Chem. 2019, 39, 1511 (in Chinese). |
| [3] | (黄鸿泰, 李涛, 王家状, 秦贵平, 肖铁波, 有机化学, 2019, 39, 1511.) |
| [3] | (b) Zhang J.; Ten Y.; Li X.; Wang S. Chin. J. Org. Chem. 2007, 228, 1358 (in Chinese). |
| [3] | (张金东, 滕雅娣, 李旭日, 王思林, 有机化学, 2007, 228, 1358.) |
| [3] | (c) Li J.; Peng J.; Li X.; Ma L.; Bai Y.; Zhang G.; Lai G. Chin. J. Org. Chem. 2010, 30, 1468 (in Chinese). |
| [3] | (厉嘉云, 彭家建, 李小年, 马磊, 白赢, 张国栋, 来国桥, 有机化学, 2010, 30, 1468.) |
| [4] | (a) Kim U. B.; Jung D. J.; Jeon H. J.; Rathwell K.; Lee S.-G. Chem. Rev. 2020, 120, 13382. |
| [4] | (b) Zhang Y.; Feng B. Chin. J. Org. Chem. 2014, 34, 2406 (in Chinese). |
| [4] | (张艳; 冯柏年, 有机化学, 2014, 34, 2406.) |
| [4] | (c) Shi X.; Han X.; Ma W.; Wei J. Chin. J. Org. Chem. 2011, 31, 297 (in Chinese). |
| [4] | (石先莹; 韩晓燕; 马文娟; 魏俊发, 有机化学, 2011, 31, 297.) |
| [4] | (d) Marciniec B.; Pietraszuk C.; Pawlu? P.; Maciejewski H. Chem. Rev. 2022, 122, 3996. |
| [5] | Wu L.-J.; Yang L.-F.; Li J.-H.; Wang Q.-A. Chem. Commun. 2020, 56, 1669. |
| [6] | Wu L.-J.; Teng F.; Lv G.-F.; Li J.-H. Org. Lett. 2020, 22, 8544. |
| [7] | Qin Y.; Han J.-L.; Ju C.-W.; Zhao D. Angew. Chem., Int. Ed. 2020, 59, 8481. |
| [8] | Wang X.-B.; Zheng Z.-J.; Xie J.-L.; Gu X.-W.; Mu Q.-C.; Yin G.-W.; Ye F.; Xu Z.; Xu L.-W. Angew. Chem., Int. Ed. 2020, 59, 790. |
| [9] | Wang D.; Li M.; Chen X.; Wang M.; Liang Y.; Zhao Y.; Houk K. N.; Shi Z. Angew. Chem., Int. Ed. 2021, 60, 7066. |
| [10] | Zhu M.-H.; Zhang X.-W.; Usman M.; Cong H.; Liu W.-B. ACS Catal. 2021, 11, 5703. |
| [11] | Li H.; Huang W.-S.; Yang K.-F.; Ye F.; Yin G.-W.; Xu Z.; Xu L.-W. Asian J. Org. Chem. 2021, 10, 2883. |
| [12] | Xu Y.; Xu W.; Chen X.; Luo X.; Lu H.; Zhang M.; Yang X.; Deng G.; Liang Y.; Yang Y. Chem. Sci. 2021, 12, 11756. |
| [13] | Qin Y.; Li L.; Liang J.-Y.; Li K.; Zhao D. Chem. Sci. 2021, 12, 14224. |
| [14] | Xu H.; Fang X.-J.; Huang W.-S.; Xu Z.; Li L.; Ye F.; Cao J.; Xu L.-W. Org. Chem. Front. 2022, 9, 5272. |
| [15] | Xu Y.; Sun M.; Xu W.; Deng G.; Liang Y.; Yang Y. J. Am. Chem. Soc. 2023, 145, 15303. |
| [16] | Zhao W.-T.; Lu Z.-Q.; Zheng H.; Xue X.-S.; Zhao D. ACS Catal. 2018, 8, 7997. |
| [17] | Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695. |
| [18] | Tang R.-H.; Xu Z.; Nie Y.-X.; Xiao X.-Q.; Yang K.-F.; Xie J.-L.; Guo B.; Yin G.-W.; Yang X.-M.; Xu L.-W. iScience 2020, 23, 101268. |
| [19] | Li H.-L.; Huang W.-S.; Ling F.-Y.; Li L.; Yan J.-H.; Xu H.; Xu L.-W. Chem.-Aslan J. 2021, 16, 1730. |
| [20] | Wang X.; Huang S.-S.; Zhang F.-J.; Xie J.-L.; Li Z.; Xu Z.; Ye F.; Xu L.-W. Org. Chem. Front. 2021, 8, 6577. |
| [21] | Zeng Y.; Fang X.-J.; Tang R.-H.; Xie J.-Y.; Zhang F.-J.; Xu Z.; Nie Y.-X.; Xu L.-W. Angew. Chem. Int. Ed. 2022, 61, e202214147. |
| [22] | Chen H.; Zhang H.; Du H.; Kuang Y.; Pang Q.; Gao L.; Wang W.; Yang C.; Song Z. Org. Lett. 2023, 25, 1558. |
| [23] | Long P.-W.; Bai X.-F.; Ye F.; Li L.; Xu Z.; Yang K.-F.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Adv. Synth. Catal. 2018, 360, 2825. |
| [24] | You Y. E.; Ge S. Angew. Chem., Int. Ed. 2021, 60, 12046. |
| [25] | Zhao M.; Wang Y.; Wang Z.-L.; Xu J.-L.; Dai K.-Y.; Xu Y.-H. Org. Lett. 2021, 23, 3859. |
| [26] | (a) Liu Y.; Luo P.; Fu Y.; Hao T.; Liu X.; Ding Q.; Peng Y. Beilstein J. Org. Chem. 2021, 17, 2462. |
| [26] | (b) Jiang S.; Nan N.; He J.; Guo J.; Qin J.; Xie Y.; Ouyang X.-H.; Song R. Chin J. Org. Chem. 2022, 42, 3959 (in Chinese). |
| [26] | (姜松, 南宁, 何景昊, 郭嘉程, 秦景灏, 谢叶香, 欧阳旋慧, 宋仁杰, 有机化学, 2022, 42, 3959.) |
| [26] | (c) Zhao Q.; Chen J. Chin. J. Org. Chem. 2021, 41, 871 (in Chinese). |
| [26] | (赵全庆, 陈加荣, 有机化学, 2021, 41, 871.) |
| [27] | Lin X.; Gan Z.; Lu J.; Su Z.; Hu C.; Zhang Y.; Wu Y.; Gao L.; Song Z. Chem. Commun. 2016, 52, 6189. |
| [28] | Wu L.-J.; Tan F.-L.; Li M.; Song R.-J.; Li J.-H. Org. Chem. Front. 2017, 4, 350. |
| [29] | Wu L.-J.; Yang Y.; Song R.-J.; Yu J.-X.; Li J.-H.; He D.-L. Chem. Commun. 2018, 54, 1367. |
| [30] | Yang Y.; Song R.-J.; Li Y.; Ouyang X.-H.; Li J.-H.; He D.-L. Chem. Commun. 2018, 54, 1441. |
| [31] | Hou H.; Xu Y.; Yang H.; Chen X.; Yan C.; Shi Y.; Zhu S. Org. Lett. 2020, 22, 1748. |
| [32] | Ye T.; Zhao J.; Zheng W.-X.; Zhang J.; Wang Z.; Zhang F.-L. Org. Chem. Front. 2023, 10, 2165. |
| [33] | (a) Jiang X.; Wang S.; Guo G.; Lu B. Chin. J. Org. Chem. 2017, 37, 841 (in Chinese). |
| [33] | (江欣, 王斯顿, 郭贵敏, 卢贝丽, 有机化学, 2017, 37, 841.) |
| [33] | (b) Yao S.; Xiong Y.; Driess M. Organometallics 2011, 30, 1748. |
| [33] | (c) Tyagi A.; Yadav N.; Khan J.; Singh S.; Hazra C. K. Asian J. Org. Chem. 2021, 10, 334. |
| [34] | He T.; Wang G.; Long P.-W.; Kemper S.; Irran E.; Klare H. F. T.; Oestreich M. Chem. Sci. 2021, 12, 569. |
| [35] | Rej S.; Klare H. F. T.; Oestreich M. Org. Lett. 2022, 24, 1346. |
| [36] | Rej S.; Klare H. F. T.; Oestreich M. Org. Lett. 2023, 25, 426. |
/
| 〈 |
|
〉 |