综述与进展

基于硅烷化启动的环化反应研究进展

  • 南宁 ,
  • 吴双 ,
  • 秦景灏 ,
  • 李金恒
展开
  • a 青岛科技大学化工学院 生态化工国家重点实验室基地 山东青岛 266042
    b 南昌航空大学 江西省持久性污染物控制与资源循环利用重点实验室 南昌 330063
    c 兰州大学应用有机化学国家重点实验室 兰州 730000
    d 河南师范大学化学化工学院 河南新乡 453007

收稿日期: 2023-07-27

  修回日期: 2023-09-09

  网络出版日期: 2023-09-15

基金资助

国家自然科学基金(22271245); 国家自然科学基金(21964013); 河南师范大学化学化工学院开放研究基金(2021ZD01); 江西省自然科学基金(20224BAB213014); 江西省自然科学基金(20212BAB213025)

State-of-Art Advances on Silylation-Initiated Annulation Reactions

  • Ning Nan ,
  • Shuang Wu ,
  • Jinghao Qin ,
  • Jinheng Li
Expand
  • a State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042
    b Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063
    c State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000
    d School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007

Received date: 2023-07-27

  Revised date: 2023-09-09

  Online published: 2023-09-15

Supported by

National Natural Science Foundation of China(22271245); National Natural Science Foundation of China(21964013); Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University(2021ZD01); Jiangxi Provincial Natural Science Foundation(20224BAB213014); Jiangxi Provincial Natural Science Foundation(20212BAB213025)

摘要

有机硅化合物是许多材料的重要基元和有用的有机分子, 是化学合成中用途广泛的合成中间体. 因此, 化学家们一直致力于开发构建含硅化学键的新方法, 特别是C—Si键. 自从Sakurai和Imai在1975年报道了第一个钯催化的硅环丁烷与炔的环加成反应以来, 过渡金属催化硅基环化反应得到了迅速的发展. 随着自由基反应的迅猛发展, 研究者将其拓展到有机硅分子间环化反应, 硅的环化反应迎来了新的发展. 主要从过渡金属催化的硅环化反应、自由基引发的硅环化反应、C离子引发的硅环化反应展开讨论, 最后对当前的研究进展进行了总结.

本文引用格式

南宁 , 吴双 , 秦景灏 , 李金恒 . 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023 , 43(10) : 3414 -3453 . DOI: 10.6023/cjoc202307025

Abstract

Organosilicon compounds are important monomers and useful organic molecules in many materials, and are widely used synthetic intermediates in chemical synthesis. Therefore, people have been working hard to develop new methods to construct silicon containing chemical bond, especially C—Si bonds. Since Sakurai and Imai reported the first palladium catalyzed cycloaddition reaction of silcyclobutane with acetylene in 1975, transition metal catalyzed silyl annulation has been developed rapidly. With the rapid development of free radical reactions, researchers have expanded them to the annulation reaction between organic silicon molecules, ushering in new developments in the annulation reaction of silicon. The transition metal catalyzed silylative annualtion reaction, free radical initiated silylative annualtion reaction, and C ion initiated silylative annualtion reaction are mainly discussed. Finally, a summary of the current research progress is described.

参考文献

[1]
(a) Feldman D. J. Polym. Sci., Part C: Polym. Lett. 1990, 28, 207.
[1]
(b) Steinmetz M. G. Chem. Rev. 1995, 95, 1527.
[1]
(c) Thomas M. J. K. Polym. Int. 2001, 50, 256.
[1]
(d) Marciniec B. Coord. Chem. Rev. 2005, 249, 2374.
[1]
(e) Molle A.; Grazianetti C.; Tao L.; Taneja D.; Alam M. H.; Akinwande D. Chem. Soc. Rev. 2018, 47, 6370.
[1]
(f) Kyushin S.; Kurosaki Y.; Otsuka K.; Imai H.; Ishida S.; Kyomen T.; Hanaya M.; Matsumoto H. Nat. Commun. 2020, 11, 4009.
[1]
(g) Li L.; Wei Y.-L.; Xu L.-W. Synlett 2020, 31, 21.
[2]
(a) Yamamoto Y. Chem. Rev. 2012, 112, 4736.
[2]
(b) Wang Y.; Attam A.; Fan H.; Zheng W.; Liu W. Small 2023, doi:10.1002/smll.202303804.
[3]
(a) Huang T.; Li T.; Wang J.; Qin G.; Xiao T. Chin. J. Org. Chem. 2019, 39, 1511 (in Chinese).
[3]
(黄鸿泰, 李涛, 王家状, 秦贵平, 肖铁波, 有机化学, 2019, 39, 1511.)
[3]
(b) Zhang J.; Ten Y.; Li X.; Wang S. Chin. J. Org. Chem. 2007, 228, 1358 (in Chinese).
[3]
(张金东, 滕雅娣, 李旭日, 王思林, 有机化学, 2007, 228, 1358.)
[3]
(c) Li J.; Peng J.; Li X.; Ma L.; Bai Y.; Zhang G.; Lai G. Chin. J. Org. Chem. 2010, 30, 1468 (in Chinese).
[3]
(厉嘉云, 彭家建, 李小年, 马磊, 白赢, 张国栋, 来国桥, 有机化学, 2010, 30, 1468.)
[4]
(a) Kim U. B.; Jung D. J.; Jeon H. J.; Rathwell K.; Lee S.-G. Chem. Rev. 2020, 120, 13382.
[4]
(b) Zhang Y.; Feng B. Chin. J. Org. Chem. 2014, 34, 2406 (in Chinese).
[4]
(张艳; 冯柏年, 有机化学, 2014, 34, 2406.)
[4]
(c) Shi X.; Han X.; Ma W.; Wei J. Chin. J. Org. Chem. 2011, 31, 297 (in Chinese).
[4]
(石先莹; 韩晓燕; 马文娟; 魏俊发, 有机化学, 2011, 31, 297.)
[4]
(d) Marciniec B.; Pietraszuk C.; Pawlu? P.; Maciejewski H. Chem. Rev. 2022, 122, 3996.
[5]
Wu L.-J.; Yang L.-F.; Li J.-H.; Wang Q.-A. Chem. Commun. 2020, 56, 1669.
[6]
Wu L.-J.; Teng F.; Lv G.-F.; Li J.-H. Org. Lett. 2020, 22, 8544.
[7]
Qin Y.; Han J.-L.; Ju C.-W.; Zhao D. Angew. Chem., Int. Ed. 2020, 59, 8481.
[8]
Wang X.-B.; Zheng Z.-J.; Xie J.-L.; Gu X.-W.; Mu Q.-C.; Yin G.-W.; Ye F.; Xu Z.; Xu L.-W. Angew. Chem., Int. Ed. 2020, 59, 790.
[9]
Wang D.; Li M.; Chen X.; Wang M.; Liang Y.; Zhao Y.; Houk K. N.; Shi Z. Angew. Chem., Int. Ed. 2021, 60, 7066.
[10]
Zhu M.-H.; Zhang X.-W.; Usman M.; Cong H.; Liu W.-B. ACS Catal. 2021, 11, 5703.
[11]
Li H.; Huang W.-S.; Yang K.-F.; Ye F.; Yin G.-W.; Xu Z.; Xu L.-W. Asian J. Org. Chem. 2021, 10, 2883.
[12]
Xu Y.; Xu W.; Chen X.; Luo X.; Lu H.; Zhang M.; Yang X.; Deng G.; Liang Y.; Yang Y. Chem. Sci. 2021, 12, 11756.
[13]
Qin Y.; Li L.; Liang J.-Y.; Li K.; Zhao D. Chem. Sci. 2021, 12, 14224.
[14]
Xu H.; Fang X.-J.; Huang W.-S.; Xu Z.; Li L.; Ye F.; Cao J.; Xu L.-W. Org. Chem. Front. 2022, 9, 5272.
[15]
Xu Y.; Sun M.; Xu W.; Deng G.; Liang Y.; Yang Y. J. Am. Chem. Soc. 2023, 145, 15303.
[16]
Zhao W.-T.; Lu Z.-Q.; Zheng H.; Xue X.-S.; Zhao D. ACS Catal. 2018, 8, 7997.
[17]
Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695.
[18]
Tang R.-H.; Xu Z.; Nie Y.-X.; Xiao X.-Q.; Yang K.-F.; Xie J.-L.; Guo B.; Yin G.-W.; Yang X.-M.; Xu L.-W. iScience 2020, 23, 101268.
[19]
Li H.-L.; Huang W.-S.; Ling F.-Y.; Li L.; Yan J.-H.; Xu H.; Xu L.-W. Chem.-Aslan J. 2021, 16, 1730.
[20]
Wang X.; Huang S.-S.; Zhang F.-J.; Xie J.-L.; Li Z.; Xu Z.; Ye F.; Xu L.-W. Org. Chem. Front. 2021, 8, 6577.
[21]
Zeng Y.; Fang X.-J.; Tang R.-H.; Xie J.-Y.; Zhang F.-J.; Xu Z.; Nie Y.-X.; Xu L.-W. Angew. Chem. Int. Ed. 2022, 61, e202214147.
[22]
Chen H.; Zhang H.; Du H.; Kuang Y.; Pang Q.; Gao L.; Wang W.; Yang C.; Song Z. Org. Lett. 2023, 25, 1558.
[23]
Long P.-W.; Bai X.-F.; Ye F.; Li L.; Xu Z.; Yang K.-F.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Adv. Synth. Catal. 2018, 360, 2825.
[24]
You Y. E.; Ge S. Angew. Chem., Int. Ed. 2021, 60, 12046.
[25]
Zhao M.; Wang Y.; Wang Z.-L.; Xu J.-L.; Dai K.-Y.; Xu Y.-H. Org. Lett. 2021, 23, 3859.
[26]
(a) Liu Y.; Luo P.; Fu Y.; Hao T.; Liu X.; Ding Q.; Peng Y. Beilstein J. Org. Chem. 2021, 17, 2462.
[26]
(b) Jiang S.; Nan N.; He J.; Guo J.; Qin J.; Xie Y.; Ouyang X.-H.; Song R. Chin J. Org. Chem. 2022, 42, 3959 (in Chinese).
[26]
(姜松, 南宁, 何景昊, 郭嘉程, 秦景灏, 谢叶香, 欧阳旋慧, 宋仁杰, 有机化学, 2022, 42, 3959.)
[26]
(c) Zhao Q.; Chen J. Chin. J. Org. Chem. 2021, 41, 871 (in Chinese).
[26]
(赵全庆, 陈加荣, 有机化学, 2021, 41, 871.)
[27]
Lin X.; Gan Z.; Lu J.; Su Z.; Hu C.; Zhang Y.; Wu Y.; Gao L.; Song Z. Chem. Commun. 2016, 52, 6189.
[28]
Wu L.-J.; Tan F.-L.; Li M.; Song R.-J.; Li J.-H. Org. Chem. Front. 2017, 4, 350.
[29]
Wu L.-J.; Yang Y.; Song R.-J.; Yu J.-X.; Li J.-H.; He D.-L. Chem. Commun. 2018, 54, 1367.
[30]
Yang Y.; Song R.-J.; Li Y.; Ouyang X.-H.; Li J.-H.; He D.-L. Chem. Commun. 2018, 54, 1441.
[31]
Hou H.; Xu Y.; Yang H.; Chen X.; Yan C.; Shi Y.; Zhu S. Org. Lett. 2020, 22, 1748.
[32]
Ye T.; Zhao J.; Zheng W.-X.; Zhang J.; Wang Z.; Zhang F.-L. Org. Chem. Front. 2023, 10, 2165.
[33]
(a) Jiang X.; Wang S.; Guo G.; Lu B. Chin. J. Org. Chem. 2017, 37, 841 (in Chinese).
[33]
(江欣, 王斯顿, 郭贵敏, 卢贝丽, 有机化学, 2017, 37, 841.)
[33]
(b) Yao S.; Xiong Y.; Driess M. Organometallics 2011, 30, 1748.
[33]
(c) Tyagi A.; Yadav N.; Khan J.; Singh S.; Hazra C. K. Asian J. Org. Chem. 2021, 10, 334.
[34]
He T.; Wang G.; Long P.-W.; Kemper S.; Irran E.; Klare H. F. T.; Oestreich M. Chem. Sci. 2021, 12, 569.
[35]
Rej S.; Klare H. F. T.; Oestreich M. Org. Lett. 2022, 24, 1346.
[36]
Rej S.; Klare H. F. T.; Oestreich M. Org. Lett. 2023, 25, 426.
文章导航

/