综述与进展

高选择性硒代半胱氨酸荧光探针的构建策略及成像

  • 张莹珍 ,
  • 江丹丹 ,
  • 李娟华 ,
  • 王菁菁 ,
  • 刘昆明 ,
  • 刘晋彪
展开
  • 江西理工大学化学化工学院 江西赣州 341000

收稿日期: 2023-05-24

  修回日期: 2023-07-11

  网络出版日期: 2023-09-21

基金资助

江西省自然科学基金(20212BAB203013); 江西省教育厅科技项目(GJJ2200820); 大学生创新创业训练计划(202110407006)

Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes

  • Yingzhen Zhang ,
  • Dandan Jiang ,
  • Juanhua Li ,
  • Jingjing Wang ,
  • Kunming Liu ,
  • Jinbiao Liu
Expand
  • College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000

Received date: 2023-05-24

  Revised date: 2023-07-11

  Online published: 2023-09-21

Supported by

Jiangxi Provincial Natural Science Foundation(20212BAB203013); Science and Technology Project of the Education Department of Jiangxi Province(GJJ2200820); National College Students’ Innovation and Entrepreneurship Training Program(202110407006)

摘要

硒代半胱氨酸(Sec)在维持生命系统运行中具有重要地位, 其浓度异常, 将导致多种生理疾病. 荧光探针具有高灵敏度、高时空分辨率、无损和可视化检测的优点. 然而, 由于生物硫醇的干扰, 用于体内成像的高选择性硒代半胱氨酸探针构建具有挑战性. 近年来, 为了提高探针选择性、准确性和荧光特性等, 人们采取了多种设计策略. 基于识别机制类型, 从设计原理、性能特点及成像应用几个方面对Sec荧光探针的研究进展进行了评述, 并展望了该领域面临的挑战和发展趋势.

本文引用格式

张莹珍 , 江丹丹 , 李娟华 , 王菁菁 , 刘昆明 , 刘晋彪 . 高选择性硒代半胱氨酸荧光探针的构建策略及成像[J]. 有机化学, 2024 , 44(1) : 41 -53 . DOI: 10.6023/cjoc202305030

Abstract

Selenocysteine (Sec) is important in maintaining the functioning of living systems and its abnormal concentration will lead to a variety of physiological disorders. Fluorescent probes offer the advantages of high sensitivity, high spatial and temporal resolution, nondestructive and visual detection. However, the construction of highly selective selenocysteine probes for in vivo imaging is challenging due to the interference of biothiols. In recent years, various design strategies have been adopted to improve probe selectivity, accuracy and fluorescence properties. The research progress of Sec fluorescent probes in terms of design principles, performance characteristics and imaging applications based on the type of recognition mechanism is reviewed, and the challenges and development trends in this field are predicted.

参考文献

[1]
Schwarz, K.; Foltz, C. M. J. Am. Chem. Soc. 1957, 79, 3292.
[2]
Hassan, Z. M.; Mohammadi, F. G.; Zamaninour, N. Obes. Surg. 2019, 29, 3743.
[3]
Wu, D.; Chen, L.; Kwon, N.; Yoon, J. Chem 2016, 1, 674.
[4]
Brinkman, M.; Buntinx, F.; Muls, E.; Zeegers, M. P. Lancet Oncol. 2006, 7, 766.
[5]
Reich, H.; Hondal, R. ACS Chem. Biol. 2016, 11, 821.
[6]
Burk, R. F.; Hill, K. E. Annu. Rev. Nutr. 2015, 35, 109.
[7]
Roman, M.; Jitaru, P.; Barbante, C. Metallomics 2014, 6, 25.
[8]
Diamond, A. Nutrients 2015, 7, 3938.
[9]
Steibrenner, H.; Speckmann, B.; Klotz, L. O. Arch. Biochem. Biophys. 2016, 595, 113.
[10]
Schoenmakers, E.; Chatterjee, K. Antioxid. Redox Signaling 2020, 33, 481.
[11]
Puppala, A. K.; French, R. L.; Matthies, D.; Baxa, U.; Subramaniam, S.; Simonovi?, M. Sci. Rep. 2016, 6, 32563.
[12]
Santesmasses, D.; Gladyshev, V. N. Int. J. Mol. Sci. 2021, 22, 11593.
[13]
Vonderheide, A. P.; Montes-Bayon, M.; Caruso, J. A. Analyst 2002, 127, 49.
[14]
Liang, L.; Mo, S.; Zhang, P.; Cai, Y.; Mou, S.; Jiang, G.; Wen, M. J. Chromatogr. A 2006, 1118, 139.
[15]
Quijano, M. A.; Gutiérrez, A. M.; Pérez-Conde, M. C.; Cámara, C. J. Anal. At. Spectrom. 1996, 11, 407.
[16]
Xu, Q.; Heo, C. H.; Kim, J. A.; Lee, H. S.; Hu, Y.; Kim, D.; Swamy, K. M. K.; Kim, G.; Nam, S.-J.; Kim, H. M. Anal. Chem. 2016, 88, 6615.
[17]
Xia, S.; Wang, J.; Bi, J.; Wang, X.; Fang, M.; Phillips, T.; May, A.; Conner, N.; Tanasova, M.; Luo, F.-T. Sens. Actuators, B 2018, 265, 699.
[18]
Liu, W.; Chen, J.; Xu, Z. Coord. Chem. Rev. 2021, 429, 213638.
[19]
Hyman, L. M.; Franz, K. J. Coord. Chem. Rev. 2012, 256, 2333.
[20]
Wang, H.-S. TrAC, Trends Anal. Chem. 2016, 85, 181.
[21]
Li, J.; Zhang, Y.; Wang, P.; Yu, L.; An, J.; Deng, G.; Sun, Y.; Kim, J. S. Coord. Chem. Rev. 2021, 427, 213559.
[22]
Chen, C.; Liu, W.; Xu, C.; Liu, W. Biosens. Bioelectron. 2016, 85, 46.
[23]
Zhang, J. D.; Zhan, Y. Chin. J. Org. Chem. 2020, 40, 1847 (in Chinese).
[23]
(张继东, 詹妍, 有机化学, 2020, 40, 1847.)
[24]
Valand, R. S.; Sivaiah, A. J. Mater. Chem. 2023, 11, 2614.
[25]
Maeda, H.; Katayama, K.; Matsuno, H.; Uno, T. Angew. Chem., 2006, 118, 1842.
[26]
Zhang, B.; Ge, C.; Yao, J.; Liu, Y.; Xie, H. C.; Fang, J. G. J. Am. Chem. Soc. 2015, 137, 757.
[27]
Zhang, H.; Li, M.; Feng, W.; Feng, G. Q. Dyes Pigm. 2018, 149, 475.
[28]
Sun, Q.; Yang, S. H.; Wu, L.; Dong, Q. J.; Yang, W. C.; Yang, G. F. Anal. Chem. 2016, 88, 6084.
[29]
Zhang, P.; Ding, Y.; Liu, W.; Niu, G.; Zhang, H.; Ge, J.; Wu, J.; Li, Y.; Wang, P. Sens. Actuators, B 2018, 264, 234.
[30]
Wang, Z.; Zheng, H.; Zhang, C.; Tang, D.; Wu, Q.; Dessie, W.; Jiang, Y. Sensors 2020, 20, 4768.
[31]
Wang, Z.; Su, W.; Zheng, H.; Yang, S.; Yang, T.; Han, T.; Dessie, W.; He, X.; Jiang, Y.; Hao, Y. Spectrochim. Acta, Part A 2022, 267, 120585.
[32]
Chen, H.; Dong, B.; Tang, Y.; Lin, W. Chem.-Eur. J. 2015, 21, 11696.
[33]
Wang, Z.; Yang, S.; Liu, X.; Yang, T.; Han, T.; He, X.; Jiang, Y.; Hao, Y. Microchem. J. 2021, 170, 106681.
[34]
Feng, W. Y.; Li, M. X.; Sun, Y.; Feng, G. Q. Anal. Chem. 2017, 89, 6106.
[35]
Zhang, L.; Kai, X.; Zhang, Y.; Zheng, Y.; Xue, Y.; Yin, X.; Zhao, J. Analyst 2018, 143, 4860.
[36]
Luo, K.; Jia, M.; Xie, C.; Yang, Q.; Tan, L.; Liu, X.; Zhou, L. Sens. Actuators, B 2023, 375, 132944.
[37]
Han, X.; Wang, R.; Song, X.; Yu, F.; Chen, L. Anal. Chem. 2018, 90, 8108.
[38]
Wang, Z.; Hao, C.; Luo, X.; Wu, Q.; Zhang, C.; Dessie, W.; Jiang, Y. Molecules 2020, 25, 4768.
[39]
Zhao, M.; Shi, D.; Hu, W.; Ma, T.; He, L.; Lu, D.; Hu, Y.; Zhou, L. Spectrochim. Acta, Part A 2021, 260, 119983.
[40]
Wang, Q.; Zhang, S.; Zhong, Y.; Yang, X. F.; Li, Z.; Li, H. Anal. Chem. 2017, 89, 1734.
[41]
Dai, C. G.; Wang, J. L.; Song, Q. H. J. Mater. Chem. B 2016, 4, 6726.
[42]
Li, M.; Feng, W.; Zhai, Q.; Feng, G. Biosens. Bioelectron. 2017, 87, 894.
[43]
Zhao, X.; Yuan, G.; Ding, H.; Zhou, L.; Lin, Q. J. Hazard. Mater. 2020, 381, 120918.
[44]
Fu, Z. H.; Han, X.; Shao, Y. L.; Fang, J. G.; Zhang, Z. H.; Wang, Y. W.; Peng, Y. Anal. Chem. 2017, 89, 1937.
[45]
Tian, Y.; Xin, F.; Gao, C.; Jing, J.; Zhang, X. J. Mater. Chem. 2017, 5, 6890.
[46]
Luo, X.; Wang, R.; Lv, C.; Chen, G.; You, J.; Yu, F. Anal. Chem. 2020, 92, 1589.
[47]
Shimomura, T.; Hirakawa, N.; Ohuchi, Y.; Ishiyama, M.; Shiga, M.; Ueno, Y. ACS Sens. 2021, 6, 2125.
[48]
Han, Y. Y.; Liu, C.; Xu, H. P.; Cao, Y. Chin. J. Chem. 2022, 40, 1578.
[49]
Tian, Y.; Zhu, B. C.; Yang, W.; Jing, J.; Zhang, X. L. Sens. Actuators, B 2018, 262, 345.
[50]
Han, X.; Song, X.; Yu, F.; Chen, L. Adv. Funct. Mater. 2017, 27, 1700769.
[51]
Wang, Y.; Zhang, L. W.; Chen, L. X. Anal. Chem. 2020, 92, 1997.
[52]
Xu, K.; Qiang, M.; Gao, W.; Su, R.; Li, N.; Gao, Y.; Xie, Y.; Kong, F.; Tang, B. Chem. Sci. 2013, 4, 207890.
[53]
Kong, F.; Hu, B.; Gao, Y.; Xu, K.; Pan, X.; Huang, F.; Zheng, Q.; Chen, H.; Tang, B. Chem. Commun. 2015, 51, 3102.
文章导航

/