综述与进展

不对称催化构建硅立体中心化合物的新反应体系研究进展

  • 曾燕 ,
  • 叶飞
展开
  • 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121

收稿日期: 2023-06-30

  修回日期: 2023-09-17

  网络出版日期: 2023-09-21

Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds

  • Yan Zeng ,
  • Fei Ye
Expand
  • Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121

Received date: 2023-06-30

  Revised date: 2023-09-17

  Online published: 2023-09-21

摘要

过去二十年以来, 硅立体中心手性有机硅化合物在有机合成、材料科学和药物设计等领域引起了广泛关注. 然而, 有机硅化合物的来源局限性大大限制了其在这些领域的应用拓展. 因此, 发展高效、高选择性的不对称催化合成方法以获得硅立体中心手性有机硅化合物是亟需解决的挑战性难题. 主要综述了2011年以来通过不对称催化合成硅立体中心手性有机硅化合物的最新研究进展.

本文引用格式

曾燕 , 叶飞 . 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023 , 43(10) : 3388 -3413 . DOI: 10.6023/cjoc202306027

Abstract

In the past two decades, organosilicon compounds bearing silicon-stereogenic centers have attracted extensive attention in the fields of organic synthesis, materials, and drug design. However, the expansion of organosilicon compounds in these fields has been greatly restricted by limited source of organosilicon compounds. Therefore, the development of highly efficient and selective asymmetric catalytic methods to obtain chiral organosilicon compounds with silicon-stereogenic centers is a challenging task that needs to be solved urgently. The latest research progress on new catalytic reaction systems for asymmetric synthesis of silicon-stereogenic center containing organosilanes since 2011 is mainly summarized.

参考文献

[1]
(a) Tacke R.; Kornek T.; Heinrich T.; Burschka C.; Penka M.; Pglm M.; Keim C.; Mutschler E.; Lambrecht G. J. Organomet. Chem. 2001, 640, 140.
[1]
(b) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
[1]
(c) Hirai M.; Tanaka N.; Sakai M.; Yamaguchi S. Chem. Rev. 2019, 119, 8291.
[1]
(d) Kan S. B. J.; Lewis R. D.; Chen K.; Arnold F. H. Science 2016, 354, 1048.
[1]
(e) Elbing M.; Bazan G. C. Angew. Chem., Int. Ed. 2008, 47, 834.
[2]
(a) Xu L. W.; Li L.; Lai G. Q.; Jiang J. X. Chem. Soc. Rev. 2011, 40, 1777.
[2]
(b) Shintani R. Asian J. Org. Chem. 2015, 4, 510.
[2]
(c) Zhang M.; Gao S.; Tang J.; Chen. L.; Liu A.; Sheng S.; Zhang A.-Q. Chem. Commun. 2021, 57, 8250.
[2]
(d) Wu. Y.; Wang, P. Angew. Chem., Int. Ed. 2022, 61, e202205382.
[2]
(e) Gao J.; He C. Chem.-Eur. J. 2022, 29, e202203475.
[3]
(a) Oestreich M.; Schmid U. K.; Auer G.; Keller M. Synthesis 2003, 2725.
[3]
(b) Rendler S.; Auer G.; Keller M.; Oestreich M. Adv. Synth. Catal. 2006, 348, 1171.
[3]
(c) Trzoss M.; Shao J.; Bienz S. Tetrahedron: Asymmetry 2004, 15, 1501.
[4]
Bai X.-F.; Zou J.-F.; Chen M.-Y.; Xu Z.; Li L.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Chem. Asian J. 2017, 12, 1730.
[5]
Corriu R. J. P.; Moreau J. J. E. J. Organomet. Chem. 1976, 120, 337.
[6]
Xu J.-X.; Chen M.-Y. Zheng Z.-J.; Cao J.; Xu Z.; Cui Y.-M.; Xu L.-W. ChemCatChem 2017, 9, 3111.
[7]
Long P.-W.; Bai X.-F. Ye F.; Li L.; Xu Z.; Yang K.-F.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Adv. Synth. Catal. 2018, 360, 2825.
[8]
Zhu J.; Chen S.; He C. J. Am. Chem. Soc. 2021, 143, 5301.
[9]
Yuan W.; Zhu X.; Xu Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202204912.
[10]
Yang W.; Liu L.; Guo J.; Wang S.-G.; Zhang J.-Y.; Fan L.-W.; Tian Y.; Wang L.-L.; Luan C.; Li Z.-L.; He C.; Wang X.; Gu Q.-S.; Liu X.-Y. Angew. Chem., Int. Ed. 2022, 61, e202205743.
[11]
Liu M.-M.; Xu Y.; He C. J. Am. Chem. Soc. 2023, 145, 11727.
[12]
Huang X.; Zhu J.; He C. Chin. Chem. Lett. 2023, DOI: 10.1016/j.cclet.2023.108783.
[13]
Tamao K.; Nakamura K.; Ishii H.; Yamaguchi S.; Shiro M. J. Am. Chem. Soc. 1996, 118, 12469.
[14]
Naganawa Y.; Namba T.; Kawagishi M.; Nishiyama H. Chem. Eur. J. 2015, 21, 9319.
[15]
Chang X.; Ma P.-L.; Chen H.-C.; Li C.-Y.; Wang P. Angew. Chem., Int. Ed. 2020, 59, 8937.
[16]
Huang Y.-H.; Wu Y.; Zhu Z.; Zheng S.; Ye Z.; Peng Q.; Wang P. Angew. Chem., Int. Ed. 2022, 61, e202113052.
[17]
Zhan G.; Teng H.-L.; Luo Y.; Nishiura M. Hou Z. Angew. Chem., Int. Ed. 2018, 130, 12522.
[18]
He T.; Liu L.-C.; Ma W.-P.; Li B.; Zhang Q.-W.; He W. Chem.- Eur. J. 2020, 26, 17011.
[19]
Wang L.; Lu W.; Zhang J.; Chong Q.; Meng F. Angew. Chem., Int. Ed. 2022, 61, e202205624
[20]
Zhao Z.-Y.; Nie Y.-X.; Tang R.-H.; Yin G.-W. Cao J.; Xu Z.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. ACS Catal. 2019, 9, 9110.
[21]
Igawa K.; Yoshihiro D.; Ichikawa N.; Kolan N.; Tamooka K. Angew. Chem., Int. Ed. 2012, 51, 12745.
[22]
Wen H.; Wan X.; Huang Z. Angew. Chem., Int. Ed. 2018, 57, 6319.
[23]
Xie J.-L.; Xu Z.; Zhou H.-Q.; Nie Y.-X.; Cao J.; Yin G.-W.; Bouillon J.-P.; Xu L.-W. Sci. China Chem. 2021, 64, 761.
[24]
Ling F.-Y.; Ye F.; Fang X.-J.; Zhou X.-H.; Huang W.-S.; Xu Z.; Xu L.-W. Chem. Sci. 2023, 14, 1123.
[25]
Lu W.; Zhao Y.; Meng F. J. Am. Chem. Soc. 2022, 144, 5233.
[26]
Jin C.; He X.; Chen S.; Guo Z.; Lan Y.; Shen X. Chem 2023, 9, DOI: 10.1016/j.chempr.2023.06.014.
[27]
Tang R.-H.; Xu Z.; Nie Y.-X.; Xiao X.-Q.; Yang K.-F.; Xie J.-L.; Guo B.; Yin G.-W.; Yang X.-M.; Xu L.-W. iScience 2020, 23, 101268.
[28]
Zeng Y.; Fang X.-J.; Tang R.-H.; Xie J.-Y.; Zhang F.-J.; Xu Z.; Nie Y.-X.; Xu L.-W. Angew. Chem., Int. Ed. 2022, 61, e202214147.
[29]
(a) Landais Y.; Parra-Rapado L.; Planchenault D.; Weber V. Tetrahedron Lett. 1997, 38, 229.
[29]
(b) Gu H.; Han Z.; Xie H.; Lin X. Org. Lett. 2018, 20, 6544.
[29]
(c) Yang L.-L.; Ouyang J.; Zou H.-N. Zhu S.-F. Zhou Q.-L. J. Am. Chem. Soc. 2021, 143, 6401.
[30]
Yasutomi Y.; Suematsu H.; Katsuki T. J. Am. Chem. Soc. 2010, 132, 4510.
[31]
Nakagawa Y.; Chanthamath S.; Fujisawa I.; Shibatomi K.; Iwasa S. Chem. Commun. 2017, 53, 3753.
[32]
Jagannathan J. R.; Fettinger J. C.; Shaw J. T.; Franz A. K. J. Am. Chem. Soc. 2020, 142, 11674.
[33]
Kuninobu Y.; Yamauchi K.; Tamura N.; Seiki T.; Takai K. Angew. Chem., Int. Ed. 2013, 52, 1520.
[34]
Murai M.; Takeuchi Y.; Yamauchi K.; Kuninobu Y.; Takai K. Chem.-Eur. J. 2016, 22, 6048.
[35]
Murai M.; Takeshima H.; Morita H.; Kuninobu Y.; Takai K. J. Org. Chem. 2015, 80, 5407.
[36]
Zhang Q.-W.; An K.; Liu L.-C.; Zhang Q.; Guo H.; He W. Angew. Chem., Int. Ed. 2017, 56, 1125.
[37]
Mu D.; Yuan W.; Chen S.; Wang N.; Yang B.; You L.; Zu B.; Yu P.; He C. J. Am. Chem. Soc. 2020, 142, 13459.
[38]
Ma W.; Liu L.-C.; An K.; He T.; He W. Angew. Chem., Int. Ed. 2021, 60, 4245.
[39]
Chen S.; Mu D.; Mai P.-L.; Ke J.; Li Y.; He C. Nat. Commun. 2021, 12,1249.
[40]
Yuan W.; You L.; Lin W.; Ke J.; Li Y.; He C. Org. Lett. 2021, 23, 1367.
[41]
Yang B.; Yang W.; Guo Y.; You L.; He C. Angew. Chem., Int. Ed. 2020, 59, 22217.
[42]
Guo Y.; Liu M.-M.; Zhu X.; Zhu L.; He C. Angew. Chem., Int. Ed. 2021, 60, 13887.
[43]
Zhang H.; Zhao D. ACS Catal. 2021, 11, 10748.
[44]
Chen S.; Zhu J.; Ke J.; Li Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202117820.
[45]
Mu D.; Pan S.; Wang X.; Liao X.; Huang Y.; Chen J. Chem. Commun. 2022, 58, 7388.
[46]
Kurihara Y.; Nishikawa M.; Yamanoi Y.; Nishihara H. Chem. Commun. 2012, 48, 11564.
[47]
Chen L.; Huang J.-B.; Xu Z.; Zheng Z.-J.; Yang K.-F.; Cui Y.-M.; Cao J.; Xu L.-W. RSC Adv. 2016, 6, 67113.
[48]
Yang J.-J.; Xu Z.; Nie Y.-X.; Lu S.-Q.; Zhang J.; Xu L.-W. J. Org. Chem. 2020, 85, 14360.
[49]
Zhou X.-H.; Fang X.-J.; Ling. F.-Y.; Xu Z.; Hong L.-Q.; Ye F.; Xu L.-W. Org. Chem. Front. 2022, 9, 5891.
[50]
Shintani R.; Moriya K.; Hayashi T. ; J. Am. Chem. Soc. 2011, 133, 16440.
[51]
Shintani R.; Moriya K.; Hayashi T. Org. Lett. 2012, 14, 2902.
[52]
Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695.
[53]
Liu S.; Zhang T.; Zhu L.; Liu F.; Bai R.; Lan Y. Org. Lett. 2020, 22, 2124.
[54]
Luo G.; Chen L.; Li Y.; Fan Y.; Wang D.; Yang Y.; Gao L.; Jiang R.; Song Z. Org. Chem. Front. 2021, 8, 5941.
[55]
Chen H.; Peng J.; Pang Q.; Du H.; Huang L.; Gao L.; Lan Y.; Yang C.; Song Z. Angew. Chem., Int. Ed. 2022, 61, e202212889.
[56]
Chen H.; Zhang H. ; Du H.; Kuang Y.; Pang Q.; Gao L.; Wang W.; Yang C.; Song Z. Org. Lett. 2023, 25, 1558.
[57]
Tang X.; Zhang Y.; Tang Y.; Li Y.; Zhou J.; Wang D.; Gao L.; Su Z.; Song Z. ACS Catal. 2022, 12, 5185.
[58]
Wang X.; Huang S.-S.; Zhang F.-J.; Xie J.-L.; Li Z.; Xu Z.; Xu L.-W. Org. Chem. Front. 2021, 8, 6577.
[59]
Zhang J.; Yan N.; Ju C.-W.; Zhao D. Angew. Chem., Int. Ed. 2021, 60, 25723.
[60]
Wang X.-C.; Li B.; Ju C.-W.; Zhao D. Nat. Commun. 2022, 13, 3392.
[61]
An K.; Ma W.; Liu L.-C.; He T.; Guan G.; Zhang Q.-W.; He W. Nat. Commun. 2022, 13, 847.
[62]
Shintani R.; Maciver E. E.; Tamakuni F.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 16955.
[63]
Onoe M.; Baba K.; Kim Y.; Kita Y.; Tobisu M.; Chatani N. J. Am. Chem. Soc. 2012, 134, 19477.
[64]
Kumar R.; Hoshimoto Y.; Yabuki H.; Ohashi M.; Ogoshi S. J. Am. Chem. Soc. 2015, 137, 11838.
[65]
Shintani R.; Kurata H.; Nozaki K. Chem. Commun. 2015, 51, 11378.
[66]
Bi X.; Feng J.; Xue X.; Gu Z. Org. Lett. 2021, 23, 3201.
[67]
Shintani R.; Otomo H.; Ota K.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 7305.
[68]
Sato Y.; Takagi C.; Shintani R.; Nozaki K. Angew. Chem., Int. Ed. 2017, 56, 9211.
[69]
Lin Y.; Ma W.-Y.; Xu Z.; Zheng Z.-J.; Cao J.; Yang K.-F.; Cui Y.-M.; Xu L.-W. Chem. Asian J. 2019, 14, 2082.
[70]
Shintani R.; Takagi C.; Ito T.; Naito M.; Nozaki K. Angew. Chem., Int. Ed. 2015, 54, 1616.
[71]
Shintani R.; Takano R.; Nozaki K. Chem. Sci. 2016, 7, 1205.
[72]
Shintani R.; Misawa N.; Takano R.; Nozaki K. Chem. Eur. J. 2017, 23, 2660.
[73]
Long P.-W.; Xie J.-L.; Yang J.-J.; Lu S.-Q.; Xu Z.; Ye F.; Xu L.-W. Chem. Commun. 2020, 56, 4188.
[74]
Wang Q.; Ye F.; Cao J.; Xu Z.; Zheng Z.-J.; Xu L.-W. Catal. Commun. 2020, 138, 105950.
[75]
Gao J.; Mai P.-L.; Ge Y.; Yuan W.; Li Y.; He C. ACS Catal. 2022, 12, 8476.
[76]
Zhang G.; Li Y.; Wang Y.; Zhang Q.; Tao X.; Zhang Q. Angew. Chem., Int. Ed. 2020, 59, 11927.
[77]
Yin K.-L.; Zhao S.; Qin Y.; Chen S.-H.; Li B.; Zhao D. ACS Catal. 2022, 12, 13999.
[78]
Li S.-S.; Sun S.; Wang J. Angew. Chem., Int. Ed. 2022, 61, e202115098.
[79]
Qi L.; Pan Q.-Q.; Wei X.-X.; Pang X.; Liu Z.; Shu X.-Z. J. Am. Chem. Soc. 2023, 145, 13008.
[80]
Murata R.; Matsumoto A.; Asano K.; Matsubara S. Chem. Commun. 2020, 56, 12335.
[81]
Zhou H.; Han J. T.; N?thling N.; Lindner M. M.; Jennicher J.; Ku?hn C.; Tsuji N.; Zhang L.; List B. J. Am. Chem. Soc. 2022, 144, 10156.
[82]
Zhou H.; Properzi R.; Leutzsch M.; Belanzoni P.; Bistoni G.; Tsuji N.; Zhang L.; Han J. T.; Zhun C. List B. J. Am. Chem. Soc. 2023, 145, 4994.
[83]
Zhou M.; Liu J.; Deng R.; Wang Q.; Wu S.; Zheng P. ACS Catal. 2022, 12, 7781.
[84]
Liu H.; Zhou H.-W.; Chen X.-K.; Xu J.-F. J. Org. Chem. 2022, 87, 16127.
[85]
Liu H.; He P.-Y.; Liao X.-L.; Zhou Y.-P.; Chen X.-K.; Ou W.-P.; Wu Z.-H.; Luo C.; Yang L.-M.; Xu J.-F. ACS Catal. 2022, 12, 9864.
[86]
Liao X.-L.; Zhou H.-W.; Chen X.-K.; Xu J.-F. Org. Lett. 2023, 25, 3099.
[87]
Zhang D.-K; Shao Y.-B.; Xie W.-S.; Chen Y.-R.; Liu W.; Bao H.-Y.; He F.-Q.; Xue X.-S.; Yang X.-Y. ACS Catal. 2022, 12, 14609.
[88]
Zhang X.-X.; Gao Y.; Zhang Y.-X.; Zhou J.; Yu J.-S. Angew. Chem., Int. Ed. 2023, 62, e202217724.
[89]
Zhu M.; Oestreich M. ACS Catal. 2023, 13, 10244.
[90]
Guo W.; Li Q.; Liu Y.; Li C. Sci. China Chem. 2023, DOI: 10.1007/s11426-023-1643-7.
文章导航

/