不对称催化构建硅立体中心化合物的新反应体系研究进展
收稿日期: 2023-06-30
修回日期: 2023-09-17
网络出版日期: 2023-09-21
Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds
Received date: 2023-06-30
Revised date: 2023-09-17
Online published: 2023-09-21
曾燕 , 叶飞 . 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023 , 43(10) : 3388 -3413 . DOI: 10.6023/cjoc202306027
In the past two decades, organosilicon compounds bearing silicon-stereogenic centers have attracted extensive attention in the fields of organic synthesis, materials, and drug design. However, the expansion of organosilicon compounds in these fields has been greatly restricted by limited source of organosilicon compounds. Therefore, the development of highly efficient and selective asymmetric catalytic methods to obtain chiral organosilicon compounds with silicon-stereogenic centers is a challenging task that needs to be solved urgently. The latest research progress on new catalytic reaction systems for asymmetric synthesis of silicon-stereogenic center containing organosilanes since 2011 is mainly summarized.
| [1] | (a) Tacke R.; Kornek T.; Heinrich T.; Burschka C.; Penka M.; Pglm M.; Keim C.; Mutschler E.; Lambrecht G. J. Organomet. Chem. 2001, 640, 140. |
| [1] | (b) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388. |
| [1] | (c) Hirai M.; Tanaka N.; Sakai M.; Yamaguchi S. Chem. Rev. 2019, 119, 8291. |
| [1] | (d) Kan S. B. J.; Lewis R. D.; Chen K.; Arnold F. H. Science 2016, 354, 1048. |
| [1] | (e) Elbing M.; Bazan G. C. Angew. Chem., Int. Ed. 2008, 47, 834. |
| [2] | (a) Xu L. W.; Li L.; Lai G. Q.; Jiang J. X. Chem. Soc. Rev. 2011, 40, 1777. |
| [2] | (b) Shintani R. Asian J. Org. Chem. 2015, 4, 510. |
| [2] | (c) Zhang M.; Gao S.; Tang J.; Chen. L.; Liu A.; Sheng S.; Zhang A.-Q. Chem. Commun. 2021, 57, 8250. |
| [2] | (d) Wu. Y.; Wang, P. Angew. Chem., Int. Ed. 2022, 61, e202205382. |
| [2] | (e) Gao J.; He C. Chem.-Eur. J. 2022, 29, e202203475. |
| [3] | (a) Oestreich M.; Schmid U. K.; Auer G.; Keller M. Synthesis 2003, 2725. |
| [3] | (b) Rendler S.; Auer G.; Keller M.; Oestreich M. Adv. Synth. Catal. 2006, 348, 1171. |
| [3] | (c) Trzoss M.; Shao J.; Bienz S. Tetrahedron: Asymmetry 2004, 15, 1501. |
| [4] | Bai X.-F.; Zou J.-F.; Chen M.-Y.; Xu Z.; Li L.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Chem. Asian J. 2017, 12, 1730. |
| [5] | Corriu R. J. P.; Moreau J. J. E. J. Organomet. Chem. 1976, 120, 337. |
| [6] | Xu J.-X.; Chen M.-Y. Zheng Z.-J.; Cao J.; Xu Z.; Cui Y.-M.; Xu L.-W. ChemCatChem 2017, 9, 3111. |
| [7] | Long P.-W.; Bai X.-F. Ye F.; Li L.; Xu Z.; Yang K.-F.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. Adv. Synth. Catal. 2018, 360, 2825. |
| [8] | Zhu J.; Chen S.; He C. J. Am. Chem. Soc. 2021, 143, 5301. |
| [9] | Yuan W.; Zhu X.; Xu Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202204912. |
| [10] | Yang W.; Liu L.; Guo J.; Wang S.-G.; Zhang J.-Y.; Fan L.-W.; Tian Y.; Wang L.-L.; Luan C.; Li Z.-L.; He C.; Wang X.; Gu Q.-S.; Liu X.-Y. Angew. Chem., Int. Ed. 2022, 61, e202205743. |
| [11] | Liu M.-M.; Xu Y.; He C. J. Am. Chem. Soc. 2023, 145, 11727. |
| [12] | Huang X.; Zhu J.; He C. Chin. Chem. Lett. 2023, DOI: 10.1016/j.cclet.2023.108783. |
| [13] | Tamao K.; Nakamura K.; Ishii H.; Yamaguchi S.; Shiro M. J. Am. Chem. Soc. 1996, 118, 12469. |
| [14] | Naganawa Y.; Namba T.; Kawagishi M.; Nishiyama H. Chem. Eur. J. 2015, 21, 9319. |
| [15] | Chang X.; Ma P.-L.; Chen H.-C.; Li C.-Y.; Wang P. Angew. Chem., Int. Ed. 2020, 59, 8937. |
| [16] | Huang Y.-H.; Wu Y.; Zhu Z.; Zheng S.; Ye Z.; Peng Q.; Wang P. Angew. Chem., Int. Ed. 2022, 61, e202113052. |
| [17] | Zhan G.; Teng H.-L.; Luo Y.; Nishiura M. Hou Z. Angew. Chem., Int. Ed. 2018, 130, 12522. |
| [18] | He T.; Liu L.-C.; Ma W.-P.; Li B.; Zhang Q.-W.; He W. Chem.- Eur. J. 2020, 26, 17011. |
| [19] | Wang L.; Lu W.; Zhang J.; Chong Q.; Meng F. Angew. Chem., Int. Ed. 2022, 61, e202205624 |
| [20] | Zhao Z.-Y.; Nie Y.-X.; Tang R.-H.; Yin G.-W. Cao J.; Xu Z.; Cui Y.-M.; Zheng Z.-J.; Xu L.-W. ACS Catal. 2019, 9, 9110. |
| [21] | Igawa K.; Yoshihiro D.; Ichikawa N.; Kolan N.; Tamooka K. Angew. Chem., Int. Ed. 2012, 51, 12745. |
| [22] | Wen H.; Wan X.; Huang Z. Angew. Chem., Int. Ed. 2018, 57, 6319. |
| [23] | Xie J.-L.; Xu Z.; Zhou H.-Q.; Nie Y.-X.; Cao J.; Yin G.-W.; Bouillon J.-P.; Xu L.-W. Sci. China Chem. 2021, 64, 761. |
| [24] | Ling F.-Y.; Ye F.; Fang X.-J.; Zhou X.-H.; Huang W.-S.; Xu Z.; Xu L.-W. Chem. Sci. 2023, 14, 1123. |
| [25] | Lu W.; Zhao Y.; Meng F. J. Am. Chem. Soc. 2022, 144, 5233. |
| [26] | Jin C.; He X.; Chen S.; Guo Z.; Lan Y.; Shen X. Chem 2023, 9, DOI: 10.1016/j.chempr.2023.06.014. |
| [27] | Tang R.-H.; Xu Z.; Nie Y.-X.; Xiao X.-Q.; Yang K.-F.; Xie J.-L.; Guo B.; Yin G.-W.; Yang X.-M.; Xu L.-W. iScience 2020, 23, 101268. |
| [28] | Zeng Y.; Fang X.-J.; Tang R.-H.; Xie J.-Y.; Zhang F.-J.; Xu Z.; Nie Y.-X.; Xu L.-W. Angew. Chem., Int. Ed. 2022, 61, e202214147. |
| [29] | (a) Landais Y.; Parra-Rapado L.; Planchenault D.; Weber V. Tetrahedron Lett. 1997, 38, 229. |
| [29] | (b) Gu H.; Han Z.; Xie H.; Lin X. Org. Lett. 2018, 20, 6544. |
| [29] | (c) Yang L.-L.; Ouyang J.; Zou H.-N. Zhu S.-F. Zhou Q.-L. J. Am. Chem. Soc. 2021, 143, 6401. |
| [30] | Yasutomi Y.; Suematsu H.; Katsuki T. J. Am. Chem. Soc. 2010, 132, 4510. |
| [31] | Nakagawa Y.; Chanthamath S.; Fujisawa I.; Shibatomi K.; Iwasa S. Chem. Commun. 2017, 53, 3753. |
| [32] | Jagannathan J. R.; Fettinger J. C.; Shaw J. T.; Franz A. K. J. Am. Chem. Soc. 2020, 142, 11674. |
| [33] | Kuninobu Y.; Yamauchi K.; Tamura N.; Seiki T.; Takai K. Angew. Chem., Int. Ed. 2013, 52, 1520. |
| [34] | Murai M.; Takeuchi Y.; Yamauchi K.; Kuninobu Y.; Takai K. Chem.-Eur. J. 2016, 22, 6048. |
| [35] | Murai M.; Takeshima H.; Morita H.; Kuninobu Y.; Takai K. J. Org. Chem. 2015, 80, 5407. |
| [36] | Zhang Q.-W.; An K.; Liu L.-C.; Zhang Q.; Guo H.; He W. Angew. Chem., Int. Ed. 2017, 56, 1125. |
| [37] | Mu D.; Yuan W.; Chen S.; Wang N.; Yang B.; You L.; Zu B.; Yu P.; He C. J. Am. Chem. Soc. 2020, 142, 13459. |
| [38] | Ma W.; Liu L.-C.; An K.; He T.; He W. Angew. Chem., Int. Ed. 2021, 60, 4245. |
| [39] | Chen S.; Mu D.; Mai P.-L.; Ke J.; Li Y.; He C. Nat. Commun. 2021, 12,1249. |
| [40] | Yuan W.; You L.; Lin W.; Ke J.; Li Y.; He C. Org. Lett. 2021, 23, 1367. |
| [41] | Yang B.; Yang W.; Guo Y.; You L.; He C. Angew. Chem., Int. Ed. 2020, 59, 22217. |
| [42] | Guo Y.; Liu M.-M.; Zhu X.; Zhu L.; He C. Angew. Chem., Int. Ed. 2021, 60, 13887. |
| [43] | Zhang H.; Zhao D. ACS Catal. 2021, 11, 10748. |
| [44] | Chen S.; Zhu J.; Ke J.; Li Y.; He C. Angew. Chem., Int. Ed. 2022, 61, e202117820. |
| [45] | Mu D.; Pan S.; Wang X.; Liao X.; Huang Y.; Chen J. Chem. Commun. 2022, 58, 7388. |
| [46] | Kurihara Y.; Nishikawa M.; Yamanoi Y.; Nishihara H. Chem. Commun. 2012, 48, 11564. |
| [47] | Chen L.; Huang J.-B.; Xu Z.; Zheng Z.-J.; Yang K.-F.; Cui Y.-M.; Cao J.; Xu L.-W. RSC Adv. 2016, 6, 67113. |
| [48] | Yang J.-J.; Xu Z.; Nie Y.-X.; Lu S.-Q.; Zhang J.; Xu L.-W. J. Org. Chem. 2020, 85, 14360. |
| [49] | Zhou X.-H.; Fang X.-J.; Ling. F.-Y.; Xu Z.; Hong L.-Q.; Ye F.; Xu L.-W. Org. Chem. Front. 2022, 9, 5891. |
| [50] | Shintani R.; Moriya K.; Hayashi T. ; J. Am. Chem. Soc. 2011, 133, 16440. |
| [51] | Shintani R.; Moriya K.; Hayashi T. Org. Lett. 2012, 14, 2902. |
| [52] | Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695. |
| [53] | Liu S.; Zhang T.; Zhu L.; Liu F.; Bai R.; Lan Y. Org. Lett. 2020, 22, 2124. |
| [54] | Luo G.; Chen L.; Li Y.; Fan Y.; Wang D.; Yang Y.; Gao L.; Jiang R.; Song Z. Org. Chem. Front. 2021, 8, 5941. |
| [55] | Chen H.; Peng J.; Pang Q.; Du H.; Huang L.; Gao L.; Lan Y.; Yang C.; Song Z. Angew. Chem., Int. Ed. 2022, 61, e202212889. |
| [56] | Chen H.; Zhang H. ; Du H.; Kuang Y.; Pang Q.; Gao L.; Wang W.; Yang C.; Song Z. Org. Lett. 2023, 25, 1558. |
| [57] | Tang X.; Zhang Y.; Tang Y.; Li Y.; Zhou J.; Wang D.; Gao L.; Su Z.; Song Z. ACS Catal. 2022, 12, 5185. |
| [58] | Wang X.; Huang S.-S.; Zhang F.-J.; Xie J.-L.; Li Z.; Xu Z.; Xu L.-W. Org. Chem. Front. 2021, 8, 6577. |
| [59] | Zhang J.; Yan N.; Ju C.-W.; Zhao D. Angew. Chem., Int. Ed. 2021, 60, 25723. |
| [60] | Wang X.-C.; Li B.; Ju C.-W.; Zhao D. Nat. Commun. 2022, 13, 3392. |
| [61] | An K.; Ma W.; Liu L.-C.; He T.; Guan G.; Zhang Q.-W.; He W. Nat. Commun. 2022, 13, 847. |
| [62] | Shintani R.; Maciver E. E.; Tamakuni F.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 16955. |
| [63] | Onoe M.; Baba K.; Kim Y.; Kita Y.; Tobisu M.; Chatani N. J. Am. Chem. Soc. 2012, 134, 19477. |
| [64] | Kumar R.; Hoshimoto Y.; Yabuki H.; Ohashi M.; Ogoshi S. J. Am. Chem. Soc. 2015, 137, 11838. |
| [65] | Shintani R.; Kurata H.; Nozaki K. Chem. Commun. 2015, 51, 11378. |
| [66] | Bi X.; Feng J.; Xue X.; Gu Z. Org. Lett. 2021, 23, 3201. |
| [67] | Shintani R.; Otomo H.; Ota K.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 7305. |
| [68] | Sato Y.; Takagi C.; Shintani R.; Nozaki K. Angew. Chem., Int. Ed. 2017, 56, 9211. |
| [69] | Lin Y.; Ma W.-Y.; Xu Z.; Zheng Z.-J.; Cao J.; Yang K.-F.; Cui Y.-M.; Xu L.-W. Chem. Asian J. 2019, 14, 2082. |
| [70] | Shintani R.; Takagi C.; Ito T.; Naito M.; Nozaki K. Angew. Chem., Int. Ed. 2015, 54, 1616. |
| [71] | Shintani R.; Takano R.; Nozaki K. Chem. Sci. 2016, 7, 1205. |
| [72] | Shintani R.; Misawa N.; Takano R.; Nozaki K. Chem. Eur. J. 2017, 23, 2660. |
| [73] | Long P.-W.; Xie J.-L.; Yang J.-J.; Lu S.-Q.; Xu Z.; Ye F.; Xu L.-W. Chem. Commun. 2020, 56, 4188. |
| [74] | Wang Q.; Ye F.; Cao J.; Xu Z.; Zheng Z.-J.; Xu L.-W. Catal. Commun. 2020, 138, 105950. |
| [75] | Gao J.; Mai P.-L.; Ge Y.; Yuan W.; Li Y.; He C. ACS Catal. 2022, 12, 8476. |
| [76] | Zhang G.; Li Y.; Wang Y.; Zhang Q.; Tao X.; Zhang Q. Angew. Chem., Int. Ed. 2020, 59, 11927. |
| [77] | Yin K.-L.; Zhao S.; Qin Y.; Chen S.-H.; Li B.; Zhao D. ACS Catal. 2022, 12, 13999. |
| [78] | Li S.-S.; Sun S.; Wang J. Angew. Chem., Int. Ed. 2022, 61, e202115098. |
| [79] | Qi L.; Pan Q.-Q.; Wei X.-X.; Pang X.; Liu Z.; Shu X.-Z. J. Am. Chem. Soc. 2023, 145, 13008. |
| [80] | Murata R.; Matsumoto A.; Asano K.; Matsubara S. Chem. Commun. 2020, 56, 12335. |
| [81] | Zhou H.; Han J. T.; N?thling N.; Lindner M. M.; Jennicher J.; Ku?hn C.; Tsuji N.; Zhang L.; List B. J. Am. Chem. Soc. 2022, 144, 10156. |
| [82] | Zhou H.; Properzi R.; Leutzsch M.; Belanzoni P.; Bistoni G.; Tsuji N.; Zhang L.; Han J. T.; Zhun C. List B. J. Am. Chem. Soc. 2023, 145, 4994. |
| [83] | Zhou M.; Liu J.; Deng R.; Wang Q.; Wu S.; Zheng P. ACS Catal. 2022, 12, 7781. |
| [84] | Liu H.; Zhou H.-W.; Chen X.-K.; Xu J.-F. J. Org. Chem. 2022, 87, 16127. |
| [85] | Liu H.; He P.-Y.; Liao X.-L.; Zhou Y.-P.; Chen X.-K.; Ou W.-P.; Wu Z.-H.; Luo C.; Yang L.-M.; Xu J.-F. ACS Catal. 2022, 12, 9864. |
| [86] | Liao X.-L.; Zhou H.-W.; Chen X.-K.; Xu J.-F. Org. Lett. 2023, 25, 3099. |
| [87] | Zhang D.-K; Shao Y.-B.; Xie W.-S.; Chen Y.-R.; Liu W.; Bao H.-Y.; He F.-Q.; Xue X.-S.; Yang X.-Y. ACS Catal. 2022, 12, 14609. |
| [88] | Zhang X.-X.; Gao Y.; Zhang Y.-X.; Zhou J.; Yu J.-S. Angew. Chem., Int. Ed. 2023, 62, e202217724. |
| [89] | Zhu M.; Oestreich M. ACS Catal. 2023, 13, 10244. |
| [90] | Guo W.; Li Q.; Liu Y.; Li C. Sci. China Chem. 2023, DOI: 10.1007/s11426-023-1643-7. |
/
| 〈 |
|
〉 |