综述与进展

无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展

  • 董江湖 ,
  • 宣良明 ,
  • 王池 ,
  • 赵晨熙 ,
  • 王海峰 ,
  • 严琼姣 ,
  • 汪伟 ,
  • 陈芬儿
展开
  • a 武汉工程大学药物研究院 武汉 430205
    b 复旦大学化学系 上海 200433
共同第一作者.

收稿日期: 2023-07-16

  修回日期: 2023-08-25

  网络出版日期: 2023-09-21

基金资助

Scientific Research Project of Education Department of Hubei Province(Q20211503)

Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free

  • Jianghu Dong ,
  • Liangming Xuan ,
  • Chi Wang ,
  • Chenxi Zhao ,
  • Haifeng Wang ,
  • Qiongjiao Yan ,
  • Wei Wang ,
  • Fen'er Chen
Expand
  • a Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205
    b Department of Chemistry, Fudan University, Shanghai 200433
These authors contributed equally to this work.

Received date: 2023-07-16

  Revised date: 2023-08-25

  Online published: 2023-09-21

摘要

喹喔啉酮及其衍生物是一类重要的含氮杂环化合物, 这种特殊的杂环骨架广泛存在于各种天然产物、药物分子以及功能材料中. 近年来, 喹喔啉酮的官能团化引起了化学工作者的广泛关注, 其中通过C—H官能团化构建3-官能团化的喹喔啉酮取得了重要进展. 光氧化还原催化可利用绿色清洁的光能在较为温和的条件下实现有机化合物的合成与转化, 因此, 越来越多的光催化体系被开发用于喹喔啉酮的官能团化. 简单高效的无过渡金属或无光催化剂的反应体系非常符合绿色化学和可持续发展的要求, 已成为喹喔啉酮类化合物官能团化强有力的工具, 同时也受到了很多学者的青睐. 对近五年来无过渡金属或无光催化剂可见光促进喹喔啉酮的C(3)位官能团化领域所取得的研究进展进行了综述, 对反应机理和氧化还原淬灭过程进行了总结, 并对该领域所面临的挑战和机遇进行了展望和探讨.

本文引用格式

董江湖 , 宣良明 , 王池 , 赵晨熙 , 王海峰 , 严琼姣 , 汪伟 , 陈芬儿 . 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024 , 44(1) : 111 -136 . DOI: 10.6023/cjoc202307016

Abstract

Quinoxalinone and its derivatives are significant non-aromatic heterocycles existing in various bioactive natural products, pharmaceuticals, and functional materials, and exhibit an impressive spectrum of important biological properties. In recent years, the functionalization of quinoxalinones has attracted extensive attention of chemical workers, and important progress has made in the construction of C-3 substituted quinoxalinones by C—H functionalization. Photoredox catalysis has been widely used in the synthesis and conversions of organic compounds, because it can generate high reactive free radical intermediates under mild conditions using green and clean energy. Thus, photocatalysis synthesis is becoming powerful tools for C—H functionalization of quinoxalinone. This photocatalytic reactions under transition-metal-free or photocatalyst-free conditions meet the requirements of green chemistry and sustainable development, which have become a powerful tool for the functionalization of quinoxalinones and attracted the attention of many scholars. The research progress of C(3)—H functionalization of quinoxalinones by visible-light photoredox catalysis under transition-metal-free or photocatalyst-free conditions is reviewed during the past five years. The reaction mechanisms are systematically discussed, and the challenges and opportunities of this field are included.

参考文献

[1]
(a) Han, Y. Y.; Wu, Z. J.; Zhang, X. M.; Yuan, W. C. Tetrahedron Lett. 2010, 51, 2023.
[1]
(b) Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N.; Fernandes, R.; Prudencio, C.; Noronha, J. P.; Vieira, M. Eur. J. Med. Chem. 2015, 97, 664.
[2]
Alsaif, N. A.; Dahab, M. A.; Alanazi, M. M.; Obaidullah, A. J.; Al-Mehizia, A. A.; Alanazi, M. M.; Aldawas, S.; Mahdy, H. A.; Elkady, H. Bioorg. Chem. 2021, 110, 104807.
[3]
Ji, Y.; Chen, X.; Chen, H.; Zhang, X.; Fan, Z.; Xie, L.; Ma, B.; Zhu, C. Bioorg. Med. Chem. 2019, 27, 1658.
[4]
Khattab, S. N.; Abdel Moneim, S. A.; Bekhit, A. A.; El Massry, A. M.; Hassan, S. Y.; El-Faham, A.; Ali Ahmed, H. E.; Amer, A. Eur. J. Med. Chem. 2015, 93, 308.
[5]
Li, L.; Okumu, A. A.; Nolan, S.; English, A.; Vibhute, S.; Lu, Y.; Hervert-Thomas, K.; Seffernick, J. T.; Azap, L.; Cole, S. L.; Shinabarger, D.; Koeth, L. M.; Lindert, S.; Yalowich, J. C.; Wozniak, D. J.; Mitton-Fry, M. J. ACS Infect. Dis. 2019, 5, 1115.
[6]
Ali, I.; Al-Masoudi, I.; Hassan, H. G.; Al-Masoudi, N. Chem. Heterocycl. Compd. 2007, 43, 1052.
[7]
Shen, Q. K.; Gong, G. H.; Li, G.; Jin, M.; Cao, L. H.; Quan, Z. S. J. Enzyme Inhib. Med. Chem. 2020, 35, 85.
[8]
Settypalli, T.; Chunduri, V. R.; Maddineni, A. K.; Begari, N.; Allagadda, R.; Kotha, P.; Chippada, A. R. New J. Chem. 2019, 43, 15435.
[9]
Elhelby, A. A.; Ayyad, R. R.; Zayed, M. F. Arzneimittelforschung 2011, 61, 379.
[10]
Loev, B.; Musser, J. H.; Brown, R. E.; Jones, H.; Kahen, R.; Huang, F. C.; Khandwala, A.; Sonnino-Goldman, P.; Leibowitz, M. J. J. Med. Chem. 1985, 28, 363.
[11]
Willardsen, J. A.; Dudley, D. A.; Cody, W. L.; Chi, L. G.; McClanahan, T. B.; Mertz, T. E.; Potoczak, R. E.; Narasimhan, L. S.; Holland, D. R.; Rapundalo, S. T.; Edmunds, J. J. J. Med. Chem. 2004, 47, 4089.
[12]
(a) Wang, P.; Zhao, Q.; Xiao, W.; Chen, J. Green Synth. Catal. 2020, 1, 42.
[12]
(b) He, S. Q.; Chen, X. L.; Zeng, F. L.; Lu, P. P.; Peng, Y. Y.; Qu, L. B.; Yu, B. Chin. Chem. Lett. 2020, 31, 1863.
[12]
(c) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[12]
(d) Sun, G.; Zuo, M.; Qian, W.; Jiao, J.; Hu, X.; Wang, L. Green Synth. Catal. 2021, 2, 32.
[12]
(e) Liu, K. J.; Wang, Z.; Lu, L. H.; Chen, J. Y.; Zeng, F.; Lin, Y. W.; Cao, Z.; Yu, X. Y.; He, W. M. Green Chem. 2021, 23, 496.
[12]
(f) Xie, L. Y.; Peng, S.; Yang, L. H.; Peng, C.; Lin, Y. W.; Yu, X. Y.; Cao, Z.; Peng, Y. Y.; He, W. M. Green Chem. 2021, 23, 374.
[12]
(g) Yang, J.; Sun, B.; Ding, H.; Huang, P. Y.; Tang, X. L.; Shi, R. C.; Yan, Z. Y.; Yu, C. M.; Jin, C. Green Chem. 2021, 23, 575.
[12]
(h) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
[12]
(i) Wang, P.-Z.; Xiao, W.-J.; Chen, J.-R. Nat. Rev. Chem. 2023, 7, 35.
[12]
(j) Li, X.; Jiang, M.; Zuo, J. Z.; Song, X. Y.; Lv, J.; Yang, D. S. Sci. China: Chem. 2023, 66, 791.
[12]
(k) Xu, H.; Zhang, J.; Zuo, J. Z.; Wang, F. X.; Lu, J.; Hun, X.; Yang, D. S. Chin. J. Org. Chem. 2022, 42, 4037 (in Chinese).
[12]
(徐浩, 张杰, 左峻泽, 王丰晓, 吕健, 混旭, 杨道山, 有机化学, 2022, 42, 4037.)
[12]
(l) Yang, D. S.; Yan, Q. L.; Zhu, E. J.; Lv, J.; He, W. M. Chin. Chem. Lett. 2022, 33, 1798.
[13]
(a) Keshari, T.; Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986.
[13]
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[13]
(c) Srivastava, V.; Singh, P. P. RSC Adv. 2017, 7, 31377.
[14]
(a) Li, H.; Chen, H.; Zhou, Y.; Huang, J.; Yi, J.; Zhao, H.; Wang, W.; Jing, L. Chem.-Asian J. 2020, 15, 555.
[14]
(b) Zhou, T.; Chen, H.; Liu, Y.; Wang, H.; Yan, Q.; Wang, W.; Chen, F. J. Org. Chem. 2022, 87, 15582.
[14]
(c) Xuan, L.; Du, R.; Lei, P.; Zhao, W.; Tan, L.; Ni, C.; Wang, H.; Yan, Q.; Wang, W.; Chen, F. Green Chem. 2022, 24, 9475.
[14]
((d) Lei, P.; Chen, Q.; Chen, H.; Zhou, Y.; Jin, L.; Wang, W.; Chen, F. Chin. J. Org. Chem. 2023, 43, 254 (in Chinese).
[14]
(雷盼盼, 陈沁琳, 陈航, 周洋, 敬林海, 汪伟, 陈芬儿, 有机化学, 2023, 43, 254.)
[14]
(e) Zhao, W.; Xuan, L.; Liu, Y.; Yin, J.; Wang, H.; Yan, Q.; Wang, W.; Huang, J.; Chen, F. New J. Chem. 2023, 47, 10744.
[14]
(f) Chen, H.; Zhou, Y.; Lei, P.; Wang, H.; Yan, Q.; Properzi, R.; Wang, W.; Jing, L.; Chen, F. Green Synth. Catal. 2023, 4, 350.
[15]
Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Yang, D.; Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252.
[16]
Mane, K. D.; Kamble, R. B.; Suryavanshi, G. New J. Chem. 2019, 43, 7403.
[17]
Zhang, W.; Pan, Y. L.; Yang, C.; Chen, L.; Li, X.; Cheng, J. P. J. Org. Chem. 2019, 84, 7786.
[18]
Li, Y.; Dai, C.; Xie, S.; Liu, P.; Sun, P. Org. Lett. 2021, 23, 5906.
[19]
Zhu, X.; Jiang, M.; Li, X.; Zhu, E.; Deng, Q.; Song, X.; Lv, J.; Yang, D. Org. Chem. Front. 2022, 9, 347.
[20]
Zhang, Y. C.; Chen, Y.; Sun, J.; Wang, J. Y.; Zhou, M. D. Chin. J. Chem. 2022, 40, 713.
[21]
Xiang, P.; Sun, K.; Wang, S.; Chen, X.; Qu, L.; Yu, B. Chin. Chem. Lett. 2022, 33, 5074.
[22]
Yan, Q.; Cui, W.; Li, J.; Xu, G.; Song, X.; Lv, J.; Yang, D. Org. Chem. Front. 2022, 9, 2653.
[23]
Kishor, G.; Ramesh, V.; Rao, V. R.; Pabbaraja, S.; Adiyala, P. R. RSC Adv. 2022, 12, 12235.
[24]
Ma, C.; Meng, H.; Li, J.; Yang, X.; Jiang, Y.; Yu, B. Chin. J. Chem. 2022, 40, 2655.
[25]
Kwon, S. J.; Jung, H. I.; Kim, D. Y. ChemistrySelect 2018, 3, 5824.
[26]
Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189 (in Chinese).
[26]
(王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
[27]
Shen, M.; Li, L.; Zhou, Q.; Wang, J.; Wang, L. Chin. J. Org. Chem. 2023, 43, 697 (in Chinese).
[27]
(沈梦涵, 李来强, 周泉, 王洁慧, 王磊, 有机化学, 2023, 43, 697.)
[28]
Bao, P.; Liu, F.; Lv, Y.; Yue, H.; Li, J.-S.; Wei, W. Org. Chem. Front. 2020, 7, 492.
[29]
Ni, H.; Li, Y.; Deng, J.; Shi, X.; Pan, Q. New J. Chem. 2021, 45, 22432.
[30]
Wei, W.; Wang, L.; Bao, P.; Shao, Y.; Yue, H.; Yang, D.; Yang, X.; Zhao, X.; Wang, H. Org. Lett. 2018, 20, 7125.
[31]
Yi, B.; Tang, H.; Yi, Z.; Gong, H.; Li, D.; Zhang, W.; Chen, Y.; Tan, J.-P.; Xie, Y. Org. Chem. Front. 2023, 10, 531.
[32]
Xie, L. Y.; Liu, Y. S.; Ding, H. R.; Gong, S. F.; Tan, J. X.; He, J. Y.; Cao, Z.; He, W. M. Chin. J. Catal. 2020, 41, 1168.
[33]
(a) Lv, Y.; Luo, J.; Lin, M.; He, L.; Yue, H.; Liu, R.; Wei, W. Adv. Synth. Catal. 2021, 363, 5122.
[33]
(b) Lv, Y.; Luo, J.; Lin, M.; Yue, H.; Dai, B.; He, L. Org. Chem. Front. 2021, 8, 5403.
[34]
(a) Meng, N.; Lv, Y.; Liu, Q.; Liu, R.; Zhao, X.; Wei, W. Chin. Chem. Lett. 2021, 32, 258.
[34]
(b) Wang, Z.; Liu, Q.; Liu, R.; Ji, Z.; Li, Y.; Zhao, X.; Wei, W. Chin. Chem. Lett. 2022, 33, 1479.
[35]
Shen, J.; He, L.; Liang, C.; Ouyang, Y.; Yue, X.; Wu, H.; Xu, J.; Liu, X.; Zhu, Q.; Zhang, P. Mol. Catal. 2022, 524, 112330.
[36]
Jiang, Y.; Liu, W. H.; Xia, Z. H.; Zhao, H. Q. Eur. J. Org. Chem. 2022, 26, e202201125.
[37]
Kim, Y.; Kim, D. Y. Tetrahedron Lett. 2018, 59, 2443.
[38]
Xie, L.-Y.; Hu, J.-L.; Song, Y.-X.; Jia, G.-K.; Lin, Y.-W.; He, J.-Y.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 19993.
[39]
Dai, C.; Zhan, Y.; Liu, P.; Sun, P. Green Chem. 2021, 23, 314.
[40]
Tian, M.; Liu, S. Y.; Bu, X. B.; Yu, J. P.; Yang, X. B. Chem.-Eur. J. 2020, 26, 369.
[41]
Wang, H.; Li, S.; Cui, Y.; Liu, M.; Bu, X.; Tian, H.; Yang, X. New J. Chem. 2022, 46, 20412.
[42]
Peng, S.; Liu, J.; Yang, L. H.; Xie, L. Y. Molecules 2022, 27, 5044.
[43]
Gao, H.; Zhang, Y.; Liang, Z.; Zhang, W.; Xu, Q.; Zhu, L.; Yao, X. Eur. J. Org. Chem. 2023, 26, e202300252.
[44]
Song, H.-Y.; Jiang, J.; Wu, C.; Hou, J.-C.; Lu, Y.-H.; Wang, K.-L.; Yang, T.-B.; He, W.-M. Green Chem. 2023, 25, 3292.
[45]
Teng, Q.-H.; Yao, Y.; Wei, W.-X.; Tang, H.-T.; Li, J.-R.; Pan, Y.-M. Green Chem. 2019, 21, 6241.
[46]
He, X. K.; Lu, J.; Zhang, A. J.; Zhang, Q. Q.; Xu, G. Y.; Xuan, J. Org. Lett. 2020, 22, 5984.
[47]
Xu, J.; Zhang, H.; Zhao, J.; Ni, Z.; Zhang, P.; Shi, B. F.; Li, W. Org. Chem. Front. 2020, 7, 4031.
[48]
Zheng, L.; Qian, Y. E.; Hu, Y. Z.; Xiao, J. A.; Ye, Z. P.; Chen, K.; Xiang, H. Y.; Chen, X. Q.; Yang, H. Org. Lett. 2021, 23, 1643.
[49]
Zhou, N.; Liu, R.; Zhang, C.; Wang, K.; Feng, J.; Zhao, X.; Lu, K. Org. Lett. 2022, 24, 3576.
[50]
Sun, K.; Shi, A.; Liu, Y.; Chen, X.; Xiang, P.; Wang, X.; Qu, L.; Yu, B. Chem. Sci. 2022, 13, 5659.
[51]
Wang, K.; Xu, W.; Qi, H.; Zhang, P.; Cao, X.-T.; Wang, G. Catalysts 2022, 12, 633.
[52]
Singh, S.; Dagar, N.; Pal, G.; Raha Roy, S. Green Chem. 2022, 24, 8460.
[53]
Liang, C.; Guo, Y.; Zhang, Y.; Wang, Z.; Li, L.; Li, W. Org. Chem. Front. 2023, 10, 611.
[54]
Shi, X.; Cao, Y.; Liu, Y.; Niu, K.; Song, H.; Zhang, J.; Wang, Q. Org. Chem. Front. 2023, 10, 1296.
[55]
Bisoyi, A.; Tripathy, A. R.; Yedase, G. S.; Sinu, P. S.; Choudhury, U.; Yatham, V. R. J. Org. Chem. 2023, 88, 2631.
[56]
Deng, Y.; Cheng, X.; Tan, H.; He, Y.; Zhang, C.; Qiu, G.; Zheng, D. Adv. Synth. Catal. 2023, 365, 865.
文章导航

/