研究论文

邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物

  • 李梦竹 ,
  • 孟博莹 ,
  • 兰文捷 ,
  • 傅滨
展开
  • 中国农业大学理学院 北京 100193

收稿日期: 2023-07-19

  修回日期: 2023-08-28

  网络出版日期: 2023-09-21

基金资助

国家重点研发计划(2017YFD0200301)

Synthesis of 2,3-Disubstituted Dihydrobenzofurans from o-Quinone Methides and Sulfur Ylides

  • Mengzhu Li ,
  • Boying Meng ,
  • Wenjie Lan ,
  • Bin Fu
Expand
  • College of Science, China Agricultural University, Beijing 100193

Received date: 2023-07-19

  Revised date: 2023-08-28

  Online published: 2023-09-21

Supported by

National Key Research and Development Program of China(2017YFD0200301)

摘要

发展了一种简便有效的通过邻甲亚醌与硫叶立德反应合成苯并二氢呋喃化合物的方法. 在二氯甲烷中和二异丙基乙基胺存在下, 反应能够在室温下1 h内完成, 以良好至优秀的收率得到反式-2,3-二取代二氢苯并呋喃产物. 反应能够扩大到克级规模, 产物能够转化为潜在生物活性的苯并呋喃衍生物, 并推测了可能的反应机理,

本文引用格式

李梦竹 , 孟博莹 , 兰文捷 , 傅滨 . 邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物[J]. 有机化学, 2024 , 44(1) : 195 -203 . DOI: 10.6023/cjoc202307019

Abstract

A facile and efficient approach to dihydrobenzofurans from sulfur ylides and o-quinone methides (o-QMs) was developed. In most cases, the reaction could be completed in the presence of N,N-diisopropylethylamine (DIPEA) in CH2Cl2 at room temperature within 1 h, providing trans-2,3-disubstitiuted dihydrobenzofurans in good to excellent yields. The reaction could expand to a scale of grams, and the products could be converted into the potentially bioactive benzofuran derivatives. The plausible mechanism is proposed.

参考文献

[1]
(a) Proksch, P.; Rodriguez, E. Phytochemistry 1983, 22, 2335.
[1]
(b) Chen, K. C.-H. Shaw, C.-Y.; Chen, C.-C.; Tsai, Y.-C. J. Nat. Prod. 2002, 65, 740.
[1]
(c) Beldjoudi, N.; Mambu, L.; Labaied, M.; Grellier, P.; Raman- trahasimbola, D.; Rasoanaivo, P.; Martin, M. T.; Frappier, F. J. Nat. Prod. 2003, 66, 1447.
[1]
(d) Radadiya, A.; Shah, A. Eur. J. Med. Chem., 2015, 97, 35.
[1]
(e) Nevagi, R. J.; Dighe, S. N.; Dighe, S. N. Eur. J. Med. Chem. 2015, 97, 561.
[2]
Pieters, L.; Dyck, S.V.; Gao, M.; Bai, R.; Hamel, E.; Vlietinck, A.; Lemiere, G. J. Med. Chem. 1999, 42, 5475.
[3]
Singh, A.; Venugopala, K. N.; Pillay, M.; Shode, F.; Coovadia, Y.; Odhav, B. Trop. J. Pharm. Res. 2021, 20, 849.
[4]
Jarvis, B. B.; Pena, N. B.; Comezoglu, S. N.; Rao, M. M. Phytochemistry 1986, 25, 533.
[5]
Bonner, W. A.; Burke, N. I.; Fleck, W. E.; Hill, R. K.; Joule, J. A.; Sj?berg, B.; Zalkow, J. H. Tetrahedron 1964, 20, 1419.
[6]
(a) Ortega, N.; Urban, S.; Beiring, B.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 1710.
[6]
(b) Ortega, N.; Beiring, B.; Urban, S.; Glorius, F. Tetrahedron 2012, 68, 5185.
[6]
(c) Yamashita, M.; Negoro, N.; Yasuma, T.; Yamano, T. Bull. Chem. Soc. Jpn. 2014, 87, 539.
[6]
(d) Pauli, L.; Tannert, R.; Scheil, R.; Pfaltz, A. Chem.-Eur. J. 2015, 21, 1482.
[7]
For selected examples, see (a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647.
[7]
(b) Yoshimi, Y.; Kanai, H.; Nishikawa, K.; Ohta, Y.; Okita, Y.; Maeda, K. Tetrahedron Lett. 2013, 54, 2419.
[7]
(c) Kshirsagar, U. A.; Regev, C.; Parnes, R.; Pappo, D. Org. Lett. 2013, 15, 3174.
[7]
(d) Huang, Z.; Jin, L.; Feng, Y.; Peng, P.; Yi, H.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7151.
[7]
(e) Koy, M.; Engle, K. M.; Henling, L. M.; Takase, M. K.; Grubbs, R. H. Org. Lett. 2015, 17, 1986.
[7]
(f) Chen, J. J.; Shao, Y.; Zheng, H.; Cheng, J.; and Wan, X. B. J. Org. Chem. 2015, 80, 10734.
[8]
For selected examples, see (a) Davies, H. M. L.; Grazini, M. V. A.; Aouad, E. Org. Lett. 2001, 3, 1475.
[8]
(b) Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto, S. Org. Lett. 2002, 4, 3887.
[8]
(c) Kurosawa, W.; Kan, T.; Kukuyama, T. Synlett 2003, 7, 1028.
[8]
(d) Kurosawa, W.; Kobayashi, H.; Kan, T.; Fukuyama, T. Tetrahedron 2004, 60, 9615.
[8]
(e) Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett. 2006, 8, 3437.
[8]
(f) Wang, H.; Li, G.; Engle, K. M.; Yu, J.-Q.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6774.
[8]
(g) Ma, X.; Wu, F.; Yi, X.; Wang, H.; Chen, W. Chem. Commun. 2015, 51, 6862.
[9]
(a) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714.
[9]
(b) Li, Q.-B.; Zhou, F.-T.; Liu, Z.-G.; Li, X.-F.; Zhu, W.-D.; Xie, J.-W. J. Org. Chem. 2011, 76, 7222.
[9]
(c) Lu, A.; Hu, K.; Wang, Y.; Song, H.; Zhou, Z. Fang, J.; Tang, C. J. Org. Chem. 2012, 77, 6208.
[9]
(d) Christensen, J.; Albrecht, ?.; J?rgensen, K. A. Chem.-Asian J. 2013, 8, 648.
[9]
(e) Osyanin, V. A.; Osipov, D. V.; Klimochkin, Y. N. J. Org. Chem. 2013, 78, 5505.
[9]
(f) Liu, Y.; Lu, A.; Hu, K.; Wang, Y.; Song, H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2013, 2013, 4836.
[9]
(g) Shaikh, A. K.; Varvounis, G. Org. Lett. 2014, 16, 1478.
[10]
(a) Wang, Z.; Sun, J. Synthesis 2015, 47, 3629.
[10]
(b) Chen, M.-W.; Cao, L. -L.; Ye, Z.-S.; Jiang, G.-F.; Zhou, Y.-G. Chem. Commun. 2013, 49, 1660.
[10]
(c) Meisinger, N.; Roiser, L.; Monkowius, U.; Himmelsbach, M.; Robiette, R.; Waser, M. Chem.-Eur. J. 2017, 23, 5137.
[10]
(d) Zielke, K.; Waser, M. Org. Lett. 2018, 20, 768.
[11]
Selected reviews on sulfur ylides, see: (a) Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937.
[11]
(b) Zhang, Y.; Wang, J. Chem. Rev. 2010, 254, 941.
[11]
(c) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278.
[11]
(d) Burtoloso, A. C. B.; Dias, R. M. P.; Leonarcyzk, I. A. Eur. J. Org. Chem. 2013, 2013, 5005.
[11]
(e) Zhu, C.; Ding, Y.; Ye, L.-W. Org. Biomol. Chem. 2015, 13, 2530.
[11]
(f) Lu, L.-Q.; Li, T.-R.; Wang, Q.; Xiao, W.-J. Chem. Soc. Rev. 2017, 46, 4135.
[11]
(g) Kaiser, D.; Klose, I.; Neuhaus, R. Oost. J.; Maulide, N. Chem. Rev. 2019, 119, 8701.
[12]
(a) Lei, X. T.; Jiang, C.-H.; Wen, X. A.; Xu, Q.-L.; Sun, H. B. RSC Adv. 2015, 5, 14953.
[12]
(b) Yang, Q.-Q.; Xiao, W.-J. Eur. J. Org. Chem. 2017, 2017, 233.
[12]
(c) Liu, L.; Yuan, Z.; Pan, R.; Zeng, Y.; Lin, A.; Yao, H.; Huang, Y. Org. Chem. Front. 2018, 5, 623.
[12]
(d) Wu, B.; Chen, M.-W.; Ye, Z.-S.; Yu, C.-B.; Zhou, Y.-G. Adv. Synth. Catal. 2014, 356, 383.
[12]
(e) Zhao, K.; Enders, D.; Zhi, Y.; von Essen, C.; Rissanen, K. Org. Chem. Front. 2018, 5, 1348.
[12]
(f) Chen, W.; Luo, F.; Wu, Y.; Cen, J.; Shao, J.; Yu, Y. Org. Chem. Front. 2020, 7, 873.
[12]
(g) Jha, B. K.; Prudhviraj, J.; Mainkar, P. S.; Punna, N.; Chandrasekhar, S. RSC Adv. 2020, 10, 38588.
[13]
Liu, Y.-Q.; Li, Q.-Z.; Zhu, H.-P.; Feng, X.; Peng, C.; Huang, W.; Li, J.-L.; Han, B. J. Org. Chem. 2018, 83, 12753.
[14]
(a) Yu, X.; Lan, W. J.; Li, J. Q.; Bai, H.; Qin, Z. H.; Fu, B. RSC Adv. 2020, 10, 44437.
[14]
(b) Luo, J.-Y.; Chenzhang, P.-F.; Lan, W. J.; Li, J.-Q.; Qin, Z. H.; Fu, B. ChemistrySelect 2021, 6, 6890.
[14]
(c) Lan, W. J.; Lei, R.-C.; Luo, J. Y.; Qin, Z. H.; Fu, B.; Xie, L. ChemistrySelect 2022, 7, e202103670.
[15]
Jurd, L. Tetrahedron 1977, 33, 163.
[16]
(a) Luan, Y; Schaus, S. E. J. Am. Chem. Soc. 2012, 134, 19965.
[16]
(b) Lian, X.-L; Adili, A; Liu, B; Tao, Z.-L; Han, Z.-Y. Org. Biomol. Chem. 2017, 15, 3670.
[17]
Shi, H. J.; Wang, L.; Li, S. S.; Liu, Y. J.; Xu, L. B. Org. Chem. Front. 2020, 7, 747.
[18]
For more X-ray crystal structure information of 3ao (CCDC 2267289)see Supporting Information. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
文章导航

/