综述与进展

全连续流反应技术在药物合成中的新进展(2019~2022)

  • 冯康博 ,
  • 陈炯 ,
  • 古双喜 ,
  • 王海峰 ,
  • 陈芬儿
展开
  • a 武汉工程大学化工与制药学院 绿色化工过程教育部重点实验室 武汉 430205
    b 武汉工程大学药物研究院 武汉 430205
    c 武汉工程大学 新型反应器与绿色化学工艺湖北省重点实验室 武汉 430205
    d 复旦大学化学系 手性分子催化与合成工程中心 上海 200433

收稿日期: 2023-07-09

  修回日期: 2023-09-16

  网络出版日期: 2023-09-28

基金资助

国家自然科学基金(22377097); 国家自然科学基金(21877087); 湖北省自然科学基金(2021CFB556); 湖北省自然科学基金(2022CFB156); 绿色化工过程教育部重点实验室开放基金(GCP20200201); 新型反应器与绿色化学工艺湖北省重点实验室(武汉工程大学)开放基金(40201002)

New Progress of Fully Continuous Flow Reaction Technologies in Pharmaceutical Synthesis (2019~2022)

  • Kangbo Feng ,
  • Jiong Chen ,
  • Shuangxi Gu ,
  • Haifeng Wang ,
  • Fen'er Chen
Expand
  • a Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205
    b Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205
    c Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205
    d Department of Chemistry, Fudan University, Shanghai 200433
* Corresponding authors. E-mail: ;

Received date: 2023-07-09

  Revised date: 2023-09-16

  Online published: 2023-09-28

Supported by

National Natural Science Foundation of China(22377097); National Natural Science Foundation of China(21877087); Natural Science Foundation of Hubei Province(2021CFB556); Natural Science Foundation of Hubei Province(2022CFB156); Key Laboratory for Green Chemical Process of Ministry of Education Open Fund(GCP20200201); Hubei Key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology) Open Fund(40201002)

摘要

连续流动化学作为化学制药行业的一项新兴技术, 相较于传统的间歇釜式反应, 连续流反应具有快速传质传热的优势, 改进反应过程的可控性和安全性, 也可以将在线分析和纯化步骤集成到柔性的操作序列中. 主要介绍了2019~2022年连续流反应技术在实现从起始原料到最终活性药物成分(API)的全连续流合成工艺方面的新进展, 从连续流反应的流程图着手, 阐述了其制备工艺及技术优势, 同时指出全连续流反应技术在各单步合成转化的工艺衔接和耦合处理仍存在一定挑战, 有待进一步提升发展.

本文引用格式

冯康博 , 陈炯 , 古双喜 , 王海峰 , 陈芬儿 . 全连续流反应技术在药物合成中的新进展(2019~2022)[J]. 有机化学, 2024 , 44(2) : 378 -397 . DOI: 10.6023/cjoc202307005

Abstract

Continuous flow chemistry is an emerging technology in the chemical pharmaceutical industry. Compared with the traditional batch kettle reaction, continuous flow reaction has the advantages of rapid mass and heat transfer, improves the controllability and safety of the reaction process, and can also integrate the online analysis and purification steps into the flexible operation sequence. The new progress of continuous flow reaction technology in the continuous synthesis process from starting raw material to final active pharmaceutical ingredient (API) from 2019 to 2022 is introduced. Starting from the flow chart of continuous flow reaction, the preparation process and technical advantages of continuous flow reaction are described. At the same time, it is pointed out that the fully continuous flow reaction technology still has some challenges in the process connection and coupling treatment of each single step synthesis transformation, which needs to be further improved.

参考文献

[1]
Mcquade, D. T.; Seeberger, P. H. J. Org. Chem. 2013, 78, 6384.
[2]
Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
[3]
Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J. M.; Myerson, A. S.; Revalor, E. M.; Senad, D. R.; Stelzer, T.; Weeranoppanant, N.; Wong, S.-Y.; Zhang, P. Scienc. 2016, 352, 61.
[4]
Liu, C.-G.; Xie, J.-X.; Wu, W.-B.; Wang, M.; Chen, W.-H.; Idres, S. B.; Rong, J.-W.; Deng, L.-W.; Khan, S. A.; Wu, J. Nat. Chem. 2021, 13, 451.
[5]
Liao, J.-Y.; Zhang, S.-L.; Wang, Z.-S.; Song, X.; Zhang, D.-L.; Kumar, R.; Jin, J.; Ren, P.; You, H.-Z.; Chen, F.-E. Green Synth. Catal. 2020, 1, 121.
[6]
Calabrese, G. S.; Pissavini, S. AIChE J. 2011, 57, 828.
[7]
Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2015, 54, 6688.
[8]
Russell, M. G.; Jamison, T. F. Angew. Chem. Int. Ed. 2019, 58, 7678.
[9]
Gérardy, R.; Monbaliu, J.-C. M. Topics in Heterocyclic Chemistry, Vol. 56, Eds.: Sharma, U. K.; der Eycken, E. V., Springer Cham, 2018, p. 1.
[10]
Burcham, C. L.; Florence, A. J.; Johnson, M. D. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 253.
[11]
Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849.
[12]
Cutler, R. A.; Stenger, R. J.; Suter, C. M. J. Am. Chem. Soc. 1952, 74, 5475.
[13]
(a) Horsberg, T. E.; Hoff, K. A.; Nordmo, R. J. Aquat. Anim. Healt. 1996, 8, 292.
[13]
(b) Shen, J.-Z.; Hu, D.-F.; Wu, X.-A.; Coats, J. R. J. Vet. Pharmacol. Ther. 2003, 26, 337.
[13]
(c) Ueda, Y.; Ohtsuki, S.; Narukawa, N. J. Vet. Med. Sci. 1995, 57, 261.
[13]
(d) Ehrlich, J.; Bartz, Q. R.; Smith, R. M.; Joslyn, D. A.; Burkholder, P. R. Scienc. 1947, 106, 417.
[13]
(e) Rebstock, M. C.; Crooks, H. M.; Controulis, J.; Bartz, Q. R. J. Am. Chem. Soc. 1949, 71, 2458.
[14]
Nitzan, O.; Supnitzky, U.; Kennes, Y.; Chazan, B.; Raul, R.; Colodner, R. Isr. Med. Assoc. J. 2010, 12, 371.
[15]
(a) Corey, E. J.; Choi, S. Tetrahedron Lett. 2000, 41, 2765.
[15]
(b) Hajra, S.; Karmakar, A.; Maji, T.; Medda, A. K. Tetrahedro. 2006, 62, 8959.
[15]
(c) Loncaric, C.; Wulff, W. D. Org. Lett. 2001, 3, 3675.
[16]
Xia, Y.-Q.; Jiang, M.-F.; Liu, M.-J.; Zhang, Y.; Qu, H.-M.; Xiong, T.; Huang, H.-S.; Cheng, D.; Chen, F.-E. J. Org. Chem. 2021, 86, 11557.
[17]
WHO Model List of Essential Medicines, 20th List, World Health Organization, 2017.
[18]
(a) Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Manninen, P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G. E. J. Med. Chem. 1996, 39, 673.
[18]
(b) Ramgren, S. D.; Silberstein, A. L.; Yang, Y.; Garg, N. K. Angew. Chem. Int. Ed. 2011, 50, 2171.
[18]
(c) Perrault, W. R.; Pearlman, B. A.; Godrej, D. B.; Jeganathan, A.; Yamagata, K.; Chen, J.-J.; Lu, C.-V.; Herrinton, P. M.; Gadwood, R. C.; Chan, L.; Lyster, M. A.; Maloney, M. T.; Moeslein, J. A.; Greene, M. L.; Barbachyn, M. R. Org. Process Res. Dev. 2003, 7, 533.
[19]
Russell, M. G.; Timothy, F. J. Angew. Chem. Int. Ed. 2019, 58, 7678.
[20]
Comer, E.; Organ, M. G. J. Am. Chem. Soc. 2005, 127, 8160.
[21]
(a) Concellón, J. M.; Suárez, J. R.; Solar, V. D. J. Org. Chem. 2005, 70, 7447.
[21]
(b) Brandt, J. C.; Elmore, S. C.; Wirth, R. I. Synlet. 2010, 20, 3099.
[21]
(c) Audiger, L.; Watts, K.; Elmore, S. C.; Wirth, R. I. ChemSusChe. 2012, 5, 257.
[21]
(d) Battilocchio, C.; Baxendale, I. R.; Biava, M.; Kitching, M. O.; Ley, S. V. Org. Process Res. Dev. 2012, 16, 798.
[22]
Magano J. Chem. Rev. 2009, 109, 4398.
[23]
Sagandira, C. R.; Paul, W. CN 113677658, 2021 [Chem. Abstr. 2021, 173, 581855]
[24]
WHO Report Standard Guidelines for the Clinical Management of Severe Influenza Virus Infections, World Health Organization , 2017.
[25]
Nie, L.-D.; Shi, X.-X. Tetrahedron: Asymmetry 2009, 20, 124.
[26]
Nie, L.-D.; Ding, W.; Shi, X.-X.; Quan, N.; Lu, X. Tetrahedron: Asymmetry 2012, 23, 742.
[27]
Nie, L.-D.; Shi, X.-X.; Ko, K. H.; Lu, W.-D. J. Org. Chem. 2009, 74, 3970.
[28]
Ogasawara, S.; Hayashi, Y. Synthesi. 2017, 49, 424.
[29]
Sagandira, C. R.; Paul, W. Synlet. 2020, 31, 1925.
[30]
Sriram, D.; Yogeeswari, P.; Srichakravarthy, N.; Bal, T. R. Bioorg. Med. Chem. Lett. 2004, 14, 1085.
[31]
Mateo, M. G.; Gutierrez, M. D. M.; Vidal, F.; Domingo, P. Expert Opin. Pharmacother. 2013, 14, 1055.
[32]
Horwitz, J. P.; Chua, J.; Noel, M.; Nucleosides, V. J. Org. Chem. 1964, 29, 2076.
[33]
Chen, B.-C.; Stark, D. R.; Baker, S. R.; Quinlan, S. L. EP 0653436, 1998.
[34]
Mansuri, M. M.; Starrett, J. E.; Wos, J. A.; Tortolani, D. R.; Brodfuehrer, P. R.; Howell, H. G.; Martin, J. C. J. Org. Chem. 1989, 54, 4780.
[35]
Discordia R. P. J. Labelled Compd. Radiopharm. 1996, 38, 613.
[36]
Chu, C.-K.; Bhadti, V. S.; Doboszewski, B.; Gu, Z.-P.; Kosugi, Y.; Pullaiah, K. C.; Van, R. P. J. Org. Chem. 1989, 54, 2217.
[37]
Shiragami, H.; Irie, Y.; Shirae, H.; Yokozeki, K.; Yasuda, N. J. Org. Chem. 1988, 53, 5170.
[38]
Livni, E.; Berker, M.; Hillier, S.; Waller, S. C.; Ogan, M. D.; Discordia, R. P.; Rienhart, J. K.; Rubin, R. H.; Fischman, A. J. Nucl. Med. Biol. 2004, 31, 613.
[39]
Sagandira, C. R.; Akwi, F. M.; Sagandira, M. B.; Watts, P. J. Org. Chem. 2021, 86, 13934.
[40]
Chakkath, T.; Lavergne, S.; Fan, T. M.; Bunick, D.; Dirikolu, L. Vet. Sci. 2015, 2, 52.
[41]
Dirikolu, L.; Chakkath, T.; Fan, T.; Mente, N. R. J. Anal. Toxicol. 2009, 33, 595.
[42]
Kaina, B.; Christmann, M.; Naumann, S.; Roos, W. P. DNA Repai. 2007, 6, 1079.
[43]
Taylor, J. W.; Armstrong, T.; Kim, A. H.; Venere, M.; Acquaye, A.; Schrag, D.; Wen, P.-Y. Neuro Oncol. 2019, 21, 1.
[44]
Jaman, Z.; Sobreira, T. J. P.; Mufti, A.; Ferreira, C. R.; Cooks, R. G.; Thompson, D. H. Org. Process Res. Dev. 2019, 23, 334.
[45]
Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N. B.; Traxler, P. Bioorg. Med. Chem. Lett. 1996, 6, 1221.
[46]
Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N. B. Bioorg. Med. Chem. Lett. 1997, 7, 187.
[47]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat. Rev. Drug Discovery. 2002, 1, 493.
[48]
Deadman, B. J.; Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem. 2013, 11, 1766.
[49]
Hopkin, M. D.; Baxendale, I. R.; Ley, S.V. Chem. Commun. 2010, 46, 2450.
[50]
Fu, W.-C.; Jamison, T. F. Org. Lett. 2019, 21, 6112.
[51]
Antar, A. I.; Otrock, Z. K.; Jabbour, E.; Mohty, M.; Bazarbachi, A. Leukemi. 2020, 34, 682.
[52]
Naganna, N.; Opoku-Temeng, C.; Choi, E. Y.; Larocque, E.; Chang, E.-T.; Carter-Cooper, B. A.; Wang, M.; Torregrosa-Allen, S. E.; Elzey, B. D.; Lapidus, R. G.; Sintim, H. O. EBioMedicin. 2019, 40, 231.
[53]
Sperry, J. B.; Minteer, C. J.; Tao, J.-Y.; Johnson, R.; Duzguner, R.; Hawksworth, M.; Oke, S.; Richardson, P. F.; Barnhart, R.; Bill, D. R.; Giusto, R. A.; Weaver, J. D. Org. Process Res. Dev. 2018, 22, 1262.
[54]
Larocque, E. A.; Naganna, N.; Opoku-Temeng, C.; Lambrecht, A. M.; Sintim, H. O. Chem. Med. Chem. 2018, 13, 1172.
[55]
Biyani, S. A.; Qi, Q.-Q.; Wu, J.-Z.; Moriuchi, Y.; Larocque, E. A.; Sintim, H. O.; Thompson, D. H. Org. Process Res. Dev. 2020, 24, 2240.
[56]
Schuüller, J.; Cassidy, J.; Dumont, E.; Roos, B.; Durston, S.; Banken, L.; Utoh, M.; Mori, K.; Weidekamm, E.; Reigner, B. Cancer Chemother. Pharmacol. 2000, 45, 291.
[57]
Venturini M. Eur. J. Cance. 2002, 38, 3.
[58]
Koukourakis, G. V.; Kouloulias, V.; Koukourakis, M. J.; Zacharias, G. A.; Zabatis, H.; Kouvaris, J. Molecule. 2008, 13, 1897.
[59]
Shimma, N.; Umeda, I.; Arasakin, M.; Murasaki, C.; Masubuchi, K.; Kohchi, Y.; Miwa, M.; Ura, M. Bioorg. Med. Chem. 2000, 8, 1697.
[60]
Shen, B.; Jamison, T. F. Org. Lett. 2012, 14, 3348.
[61]
Miranda, L. S. D. M.; de Souza, R. O. M. A.; Lea?, R. A. C.; Carneiro, P. F.; Pedraza, S. F.; de Carvalho, O. V.; de Souza, S. P.; Neves, R. V. Org. Process Res. Dev. 2019, 23, 2516.
[62]
Heim, C.; Pliatsika, D.; Mousavizadeh, F.; B?r, K.; Alvarez, B. H.; Giannis, A.; Hartmann, M. D. J. Med. Chem. 2019, 62, 6615.
[63]
Ivanova, M.; Legros, J.; Poisson, T.; Jubault, P. J. Flow Chem. 2022, 12, 383.
[64]
Hoy S. M. Drug. 2016, 76, 509.
[65]
Wang, P.; Li, P.-X.; Gu, X.-Y. WO 2015054960, 2015 [Chem. Abstr. 162, 564086]
[66]
Meng, Q.; Zhao, T.; Kang, D.-W.; Huang, B.-S.; Zhan, P.; Liu, X.-Y. Chem. Cent. J. 2017, 11, 1.
[67]
Halama, A.; Stach, J.; Rádl, S.; Benediktová, K. Org. Process Res. Dev. 2018, 22, 1861.
[68]
Huang, Y.; Xu, H.; Zhang, Y.-B.; Zheng, F. CN 105399694, 2016 [Chem. Abstr. 2016, 164, 438099]
[69]
Wang, J.-F.; Zeng, W.-Q.; Li, S.-H.; Shen, L.; Gu, Z.-X.; Zhang, Y.; Li, J.; Chen, S.-H.; Jia, X.-B. ACS Med. Chem. Lett. 2017, 8, 299.
[70]
Chen, W.-Q.; Luo, J.; Liu, L.-X.; Fan, Y.-P. WO 2014198241, 2014 [Chem. Abstr. 2014, 162, 82161]
[71]
Gunic, E.; Girardet, J. L.; Vernier, J. M.; Tedder, M. E.; Paisner, D. A. US 8173690, 2010 [Chem. Abstr. 2010, 152, 311613]
[72]
Dami?o, M. C. F. C. B.; Mar?on, H. M.; Pastre, J. C. React. Chem. Eng. 2020, 5, 865.
[73]
Grafe, I.; Schickaneder, H.; Ahrens, K. H. US 4978773, 1990 [Chem. Abstr. 1990, 113, 190940]
[74]
(a) Chen, F.; Deng, Y.; Wan, J. Chin. J. Pharm. 1998, 29, 339.
[74]
(b) Wadia, M. S.; Patil, D. V. Synth. Commun. 2003, 33, 2725.
[75]
Maiorana, S.; Galliani, G.; Chiodini, G.; WO 1992022522, 1992.
[76]
Wang, L.-L.; Liu, M.-J.; Jing, M.-F.; Wan, L.; Li, W.-J.; Cheng, D.; Chen, F.-E. Chem. Eur. J. 2022, 28, 1.
[77]
Bédard, A. C.; Adamo, A.; Aroh, K. C.; Russell, M. G.; Bedermann, A. A.; Torosian, J.; Yue, B.; Jensen, K. F.; Jamison, T. F. Scienc. 2018, 361, 1220.
[78]
Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J. C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R.; Stelzer, T.; Weeranoppanant, N.; Wong, S.-Y.; Zhang, P. Scienc. 2016, 352, 61.
[79]
Kumar, S. V.; Singh, A. K.; Pabbaraja, S. Org. Process Res. Dev. 2019. 23, 1892.
[80]
(a) Kolodych, S.; Rasolofonjatovo, E.; Chaumontet, M.; Nevers, M.-C.; Créminon, C.; Taran, F. Angew. Chem. Int. Ed. 2013, 52, 12056.
[80]
(b) Browne, D. L.; Taylor, J. B.; Plant, A.; Harrity, J. P. A. J. Org. Chem. 2010, 75, 984.
[80]
(c) Decuypere, E.; Specklin, S.; Gabillet, S.; Audisio, D.; Liu, H.; Plougastel, L.; Kolodych, S.; Taran, F. Org. Lett. 2015, 17, 362.
[81]
Comas-Barceló, J.; Blanco-Ania, D.; van den Broek, S. A. M. W.; Nieuwland, P. J.; Harrity, J. P. A.; Rutjes, F. P. J. T. Catal. Sci. Technol. 2016, 6, 4718.
[82]
Poh, J.-S.; Browne, D. L.; Ley, S. V. React. Chem. Eng. 2016, 1, 101.
[83]
Vickerstaffe, E.; Warrington, B. H.; Ladlow, M.; Ley, S. V. J. Comb. Chem. 2004, 6, 332.
[84]
(a) Firth, B. E.; Rosen, R. J. US 4447657, 1984 [Chem. Abstr. 1984, 101, 72420]
[84]
(b) Firth B. E. US 4275248, 1981 [Chem. Abstr. 1981, 95, 115041]
[84]
(c) Ecke, G. G.; Kolka, A. J. US 2831898, 1958 [Chem. Abstr. 1958, 52, 92696]
[84]
(d) Napolitano J. P. US 3367981, 1968 [Chem. Abstr. 1968, 69, 51823]
[84]
(e) Buls, V. W.; Miller, R. S. US 2923745, 1960 [Chem. Abstr. 1960, 54, 50254]
[85]
(a) Stroh, R.; Seydel, R.; Hahn, W. Ang. Chem. 1957, 69, 699.
[85]
(b) Kolka, A. J.; Napolitano, J. P.; Filbey, A. H.; Ecke, G. G. J. Org. Chem. 1957, 22, 642.
[86]
(a) Davuluri, R.; Ponnalah, R.; Kumar, N.; Nimmakayala, N.; Reddy, M. WO 2013035103, 2013 [Chem. Abstr. 2013, 158, 418524]
[86]
(b) Sharma, A. K.; Pandey, M.; Giri, A.; Sokhi, S. S.; Singh, G.; Lahiri, S.; Cabri, W. WO 2021191832, 2021 [Chem. Abstr. 2021, 176, 305237]
[87]
Pramanik, C.; Kotharkar, S.; Patil, P.; Gotrane, D.; More, Y.; Borhade, A.; Chaugule, B.; Khaladkar, T.; Neelakandan, K.; Chaudhari, A.; Kulkarni, M. G.; Tripathy, N. K.; Gurjar, M. K. Org. Process Res. Dev. 2014, 18, 152.
[88]
Mougeot, R.; Jubault, P.; Legros, J.; Poisson, T. Molecule. 2021, 26, 7183.
[89]
Martins, G. M.; Magalh?es, M. F. A.; Brocksom, T. J.; Bagnato, V. S.; de Oliveira, K. T. J. Flow Chem. 2022, 12, 371.
[90]
Vinet, L.; Marco, L. D.; Kairouz, V.; Charette, A. B. Org. Process Res. Dev. 2022, 26, 2330.
[91]
Kadhum, W. R.; Hijikuro, T. O.; Kenji, I. T.; Mark, S. Eur. J. Pharm. Sci. 2016, 88, 282.
[92]
Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2015, 54, 6688.
[93]
Fran?a, A. d. S.; Le?o, R. A. C.; de Souza, R. O. M. A. J. Flow Chem. 2020, 10, 563.
[94]
(a) Liu, H.; Zhen, X.-C.; Sun, H.-F.; Zhu, L.-Y.; Qian, W.-K.; Yu, L.-P.; Li, Z.; Cai, W.-X.; Jiang, H.-L.; Chen, K.-X. CN 102796096, 2012 [Chem. Abstr. 2012, 160, 473334]
[94]
(b) Zhang, Z.-H.; Zhang, H.-J.; Deng, A.-J.; Wang, B.; Li, Z.-H.; Liu, Y.; Wu, L.-Q.; Wang, W.-J.; Qin, H.-L. J. Med. Chem. 2015, 58, 7557.
[94]
(c) Li, Y.-H.; Yang, P.; Kong, W.-J.; Wang, Y.-X.; Hu, C.-Q.; Zuo, Z.-Y.; Wang, Y.-M.; Gao, H.; Gao, L.-M.; Feng, Y.-C.; Du, N.-N.; Liu, Y.; Song, D.-Q.; Jiang, J.-D. J. Med. Chem. 2009, 52, 492.
[94]
(d) Wu, S.; Wang, D.-M.; Wei, J.-Z. CN 103421003, 2012 [Chem. Abstr. 2012, 160, 34019]
[95]
(a) Yu, J.-X.; Zhang, Z.-H.; Zhou, S.-Q.; Zhang, W.; Tong, R.-B. Org. Chem. Front. 2018, 5, 242.
[95]
(b) Sun, H.-F.; Zhu, L.-Y.; Yang, H.-C.; Qian, W.-K.; Guo, L.; Zhou, S.-B.; Gao, B.; Li, Z.; Zhou, Y.; Jiang, H.-L.; Chen, K.-X.; Zhen, X.-C. Bioorg. Med. Chem. 2013, 21, 856.
[96]
Li, W.-J.; Jing, M.-F.; Liu, M.-J.; Lin, X.; Xia, Y.-Q.; Wan, L.; Chen, F.-E. Chem. Eur. J. 2022, 28, 1.
[97]
Sigel, E.; Ernst, M. Trends Pharmacol. Sci. 2018, 39, 659.
[98]
McDonough, J. A.; Durrwachter, J. R. Org. Process Res. Dev. 1997, 1, 268.
[99]
Liu, G.; Wang, H.-B.; Liu, X.-S. CN 112898203, 2021 [Chem. Abstr. 2021, 175, 209188]
[100]
Alharthy R. D. Pharm. Chem. J. 2020, 54, 273.
[101]
Prajuli, R.; Banerjee, J.; Khanal, H. Orient. J. Chem. 2015, 31, 2099.
[102]
Shrivastava, P.; Singh, P.; Tewari, A. K. Med. Chem. Res. 2012, 21, 2465.
[103]
Tewari, A. K.; Singh, V. P.; Yadav, P.; Gupta, G.; Singh, A.; Goel, R. K.; Shinde, P.; Mohan, C. G. Bioorg. Chem. 2014, 56, 8.
[104]
Beyrati, M.; Hasaninejad, A. Org. Prep. Proced. Int. 2016, 5, 393.
[105]
Sun, P.-F.; Yang, D.-S.; Wei, W.; Sun, X.-J.; Zhang, W.-H.; Zhang, H.; Wang, Y.; Wang, H. Tetrahedro. 2017, 73, 2022.
[106]
Zakerinasab, B.; Nasseri, M. A.; Hassani, H.; Samieadel, M. M. Res. Chem. Intermedia. 2016, 42, 3169.
[107]
Zhou, S.-H.; Hong, Q.-S.; Mei, W.-L.; He, Y.; Wu, C.-J.; Sun, T.-M. Org. Process Res. Dev. 2021, 25, 2146.
[108]
Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
[109]
Liu, D.; Zhu, Y.-Y.; Gu, S.-X.; Chen, F.-E. Chin. J. Org. Chem. 2021, 41, 1002 (in Chinese).
[109]
(刘玎, 朱园园, 古双喜, 陈芬儿, 有机化学. 2021, 41, 1002.)
[110]
Li, J.-P.; Huang, S.-T.; Yang, Q.; Li, W.-Q.; Liu, T.; Huang, C. Chin. J. Org. Chem. 2023, 43, 1550 (in Chinese).
[110]
(李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超, 有机化学. 2023, 43, 1550.)
[111]
Cheng, D.; Chen, F.-E. Chem. Ind. Eng. Prog. 2019, 38, 556 (in Chinese).
[111]
(程荡, 陈芬儿, 化工进展. 2019, 38, 556.)
文章导航

/