吗啉磺酰胺化合物的设计、合成及其抑制大豆萌芽活性的研究
收稿日期: 2023-07-15
修回日期: 2023-08-19
网络出版日期: 2023-09-28
基金资助
湖南省自然科学基金青年(2021JJ40515); 湖南省教育厅优秀青年(21B0677)
Design and Synthesis of Morpholine Sulfonamide Compound and Its Inhibition on Soybean Seed Germination
Received date: 2023-07-15
Revised date: 2023-08-19
Online published: 2023-09-28
Supported by
Natural Science Foundation of Hunan Province Youth Project(2021JJ40515); Scientific Research Fund of Hunan Provincial Education Department(21B0677)
为了发现新型脱落酸功能类似物, 采用活性亚结构拼接原理设计了含吗啉磺酰胺片段的目标分子. 以吗啉-4-磺酰胺和氟代硝基苯为起始原料, 经芳基亲核取代反应合成了14个目标化合物, 该合成方法操作简单, 底物适用范围广. 种子萌芽实验结果表明, 浓度为50 µmol/L时4a~4d、4k、4m、4n等7个化合物处理后完全抑制萌芽, 25 µmol/L时4a~4d、4k、4m、4n等7个化合物处理后抑制率仍高于95%. 进一步降低至15 μmol/L时, 发现4m、4n的抑制活性高于ABA和先导化合物PM4. 分子对接结果表明, 引入吗啉促使小分子中磺酰基(SO2)与Ser98形成氢键, 提高了结合受体的能力, 所以4m和4n的打分函数高于ABA和PM4, 活性也更高. 该结果有利于发现新型脱落酸功能类似物.
黄志友 , 杨平 , 何波 , 欧文霞 , 袁思雨 . 吗啉磺酰胺化合物的设计、合成及其抑制大豆萌芽活性的研究[J]. 有机化学, 2024 , 44(1) : 309 -315 . DOI: 10.6023/cjoc202307014
In order to obtain novel abscisic acid analogues, morpholine-sulfonamide compound was designed under the principle of active substructure combination. 14 target compounds were obtained through aromatic nucleophilic substitution (SNAr) when fluoride nitrobenzene and morpholine-4-sulfonamide were used as starting materials. The approach represents simple operation and broad substrate scope. Additionally, the soybean seed germination was inhibited overwhelmingly when treated with compounds 4a~4d, 4k, 4m and 4n at 50 μmol/L. Furthermore, the inhibition activity of compounds 4a~4d, 4k, 4m and 4n was higher than 95% at 25 μmol/L. Finally, the activity of 4m and 4n was much higher than that of ABA and lead compound (PM4) at 15 μmol/L. Moreover, the molecular docking study revealed that 4m and 4n could bind abscisic acid receptor strongly than ABA and PM4. These results are benefit to discovering novel ABA analogues.
| [1] | Li, Z. X.; Takahashi, Y.; Scavo, A.; Brandt, B.; Nguyen, D.; Rieu, P.; Schroeder, J. I. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 4522. |
| [2] | Jurkiewicz, P.; Batoko, H. Plant Sci. 2018, 267, 48. |
| [3] | Park, S. Y.; Peterson, F. C.; Mosquna, A.; Yao, J.; Volkman, B. F.; Cutler, S. R. Nature 2015, 520, 545. |
| [4] | Hampson, C. R.; Reaney, M. J. T.; Abrams, G. D.; Abrams, S. R.; Gusta, L. V. Phytochemistry 1992, 31, 2645. |
| [5] | Verslues, P. E.; Zhu, J. New developments in abscisic acid perception and metabolism. Curr. Opin. Plant Biol. 2007, 10, 447. |
| [6] | Han, X. Q.; Xiao, Y. M.; Lu, H. Z.; Qian, Z. H. Chin. Bull. Botany 2013, 48, 329 (in Chinese). |
| [6] | (韩小强, 肖玉梅, 路慧哲, 覃兆海, 植物学报, 2013, 48, 329.) |
| [7] | Han, X. Q.; Wan, C.; Yang, D. Y.; Du, S. J.; Yuan, X. Y.; Xiao, Y. M.; Qin, Z. H. Chin. J. Org. Chem. 2014, 34, 1692 (in Chinese). |
| [7] | (韩小强, 万川, 杨冬燕, 杜士杰, 袁小勇, 肖玉梅, 覃兆海, 有机化学, 2014, 34, 1692.) |
| [8] | Ma, Y.; Szostkiewicz, I.; Korte, A.; Moes, D.; Yang, Y.; Christmann, A.; Grill, E. Science 2009, 324, 1064. |
| [9] | Park, S.; Fung, P.; Nishimura, N.; Jensen, D. R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T. F. Science 2009, 324, 1068. |
| [10] | Cao, M.; Liu, X.; Zhang, Y.; Xue, X.; Zhou, X. E.; Melcher, K.; Gao, P.; Wang, F.; Zeng, L.; Zhao, Y. Cell Res. 2013, 23, 1043. |
| [11] | Okamoto, M.; Peterson, F. C.; Defries, A.; Park, S.; Endo, A.; Nambara, E.; Volkman, B. F.; Cutler, S. R. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12132. |
| [12] | Duan, L. S.; Yu, C. X.; Liu, S. J.; Hu, T. L.; Zhou, Y. Y.; Li, Z. H. WO 2018086507, 2013. |
| [13] | Che, C. L.; Hu, Y. M.; Ding, S. S.; Xiao, Y. M.; Li, J. Q.; Qin, Z. H. Chin. J. Org. Chem. 2019, 39, 419 (in Chinese). |
| [13] | (车传亮, 胡益敏, 丁珊珊, 肖玉梅, 李佳奇, 覃兆海, 有机化学, 2019, 39, 419.) |
| [14] | Huang, Z. Y.; Yang, J. F.; Song, K.; Chen, Q.; Zhou, S. L.; Hao, G. F.; Yang, G. F. J. Org. Chem. 2016, 81, 9647. |
| [15] | Huang, Z. Y.; Yang, J. F.; Chen, Q.; Cao, R. J.; Huang, W.; Hao, G. F.; Yang, G. F. RSC Adv. 2015, 5, 75182. |
| [16] | Yang, G. F.; Huang, Z. Y.; Hao, G. F. CN 107382842, 2017. |
| [17] | Huang, Z. Y.; Li, Z. Z.; He, B.; Li, W. S.; Yang, P.; Chen, L. J. Chin. J. Org. Chem. 2022, 42, 1667 (in Chinese). |
| [17] | (黄志友, 李哲陟, 何波, 李文胜, 杨平, 陈立军, 有机化学, 2022, 42, 1667.) |
| [18] | Huang, Z. Y.; Liu, M.; Mao, Y. J.; Chen, Y. D.; Wang, Y. P.; Liu. C. Tetrahedron lett. 2019, 60, 626. |
| [19] | Wu, Y. J.; Guernon, J.; McClure, A.; Venables, B.; Rajamani, R.; Robbins, K. J.; Knox, R. J.; Matchett, M.; Pieschl, R. L.; Herrington, J.; Bristow, L. J.; Meanwell, N. A.; Olson, R.; Thompson, L. A.; Dzierba, C. Bioorg. Med. Chem. Lett. 2018, 28, 958. |
| [20] | Gomha, S. M.; Muhammad, Z. A.; Abdel-aziz, H. M.; El-Arab, E. E. Croat. Chem. Acta. 2018, 91, 43. |
| [21] | Huang, K.; Jiang, L. L.; Liang, R. H.; Li, H. T.; Ruan, X. X.; Shan, C. L.; Ye, D. Y.; Zhou, L. Eur. J. Med. Chem. 2019, 168, 45. |
| [22] | Patharia, M. A.; Raut, S. V.; Dhotre, B. K.; Pathan, M. A. Polycyclic Aromat. Compd. 2022, 42, 2323. |
| [23] | Wu, H. F.; Lu, X. F.; Xu, J. B.; Zhang, X. M.; Li, Z. N.; Yang, X. l.; Ling, Y. Molecules 2022, 27, 8700. |
| [24] | More, N. A.; Jadhao, N. L.; Meshram, R. J.; Tambe, P.; Salve, R. A.; Sabane, J. K.; Sawant, S. N.; Gajbhiye, V.; Gajbhiye, J. M. J. Mol. Struct. 2022, 1253 |
| [25] | Paetzold, F.; Niclas, H.; Foerster, H. Z. Chem. 1989, 29, 203. |
| [26] | Alcaraz, L.; Bennion, C.; Morris, J.; Meghani, P.; Thom, S. M. Org. Lett. 2004, 6, 2705. |
/
| 〈 |
|
〉 |