经由N-硼基酰胺中间体的酰胺高效转化合成腈类化合物
收稿日期: 2023-07-20
修回日期: 2023-09-22
网络出版日期: 2023-10-12
基金资助
国家自然科学基金(22022204); 国家自然科学基金(21633013); 国家自然科学基金(22072167); 国家自然科学基金(22202218)
Efficient Synthesis of Nitrile Compounds through Amide Conversion via N-Boroamide Intermediates
Received date: 2023-07-20
Revised date: 2023-09-22
Online published: 2023-10-12
Supported by
National Natural Science Foundation of China(22022204); National Natural Science Foundation of China(21633013); National Natural Science Foundation of China(22072167); National Natural Science Foundation of China(22202218)
李洋 , 董亚楠 , 李跃辉 . 经由N-硼基酰胺中间体的酰胺高效转化合成腈类化合物[J]. 有机化学, 2024 , 44(2) : 638 -643 . DOI: 10.6023/cjoc202307020
HBpin is used as a boronizing reagent and formal dehydrating agent is reported for the first time. CsF was used as a catalyst to achieve the dehydration and conversion of primary amides, and various nitrile compounds were obtained with good to excellent yields. This method is easy to operate, and the yield of the target product in the gram scale amplification experiment is 96%. The catalytic system exhibits good compatibility with various functional groups, such as halogen, trifluoromethyl, heterocycle, and amino group. These results indicate that this method has good application potential. Mechanism studies have shown that the in-situ generation of N-boroamide intermediates and H2 is the key to the smooth occurrence of the reaction. And, the formation of thermodynamically stable B-O-B anhydride and nitrile product is the driving force of this transformation.
Key words: CsF; catalysis; primary amide; cyanation; borane
| [1] | (a) Yan, G.-B; Zhang, Y.; Wang, J.-B. Adv. Synth. Catal. 2017, 359, 4068. |
| [1] | (b) Al-Huniti, M. H.; Croatt, M. P. Asian J. Org. Chem. 2019, 8, 1791. |
| [1] | (c) Han, B.; Zhang, J.; Jiao, H.; Wu, L. Chin. J. Catal. 2021, 42, 2059. |
| [1] | (d) Zhao, Z.; Ou, Z.; Kalita, S. J.; Cheng, F.; Huang, Q.; Gu, Y.; Wang, Y.; Zhao, Y.; Huang, Y. Chin. Chem. Lett. 2022, 33, 3012. |
| [1] | (e) Lu, C.; Ye, M.; Li, M.; Zhang, Z.; He, Y.; Long, L.; Chen, Z. Chin. Chem. Lett. 2022, 33, 3967. |
| [1] | (f) Wu, G.; Li, W.; Du, W.; Yue, A.; Zhao, J.; Liu, D. Chin. Chem. Lett. 2022, 33, 519. |
| [2] | (a) Huang, Z.; Tang, J.; Jiang, X.; Xie, T.; Zhang, M.; Lan, D.; Pi, S.; Tan, Z.; Yi, B.; Li, Y. Chin. Chem. Lett. 2022, 33, 4842. |
| [2] | (b) Chen, P.; Tang, X.; Meng, X.; Tang, H.; Pan, Y.; Liang, Y. Green Synth. Catal. 2022, 3, 162. |
| [2] | (c) Liu, M.; Xu, L.; Wei, Y. Chin. Chem. Lett. 2022, 33, 1559. |
| [2] | (d) Du, M; Sun, Y; Zhao, J.; Hu, H.; Sun, L.; Li, Y. Chin. Chem. Lett. 2023, 34, 108269. |
| [2] | (e) Yan, Z.; Sun, B.; Huang, P.; Zhao, H.; Ding, H.; Su, W.; Jin, C. Chin. Chem. Lett. 2022, 33, 1997. |
| [3] | Reisner, D. B.; Coring, E. G. Org. Synth. 1963, 4, 144. |
| [4] | Lehnert W. Tetrahedron Lett. 1971, 12, 1501. |
| [5] | Krynitsy, J. A.; Carhart, H. W. Org. Synth. 1963, 4, 436. |
| [6] | Campagna, F.; Carroti, A.; Casini, G. Tetrahedron Lett. 1977, 18, 1813. |
| [7] | Rickborn, B.; Jensen, F. R. J. Org. Chem. 1962, 27, 4608. |
| [8] | Ellzey, S. E.; Mack, C. H.; Connick, W. J. J. Org. Chem. 1967, 32, 846. |
| [9] | Bose, D. S.; Narsaiah, A. V. Synthesi. 2001, 373. |
| [10] | Bose, D. S.; Sunder, K. S. Synth. Commun. 1999, 4235. |
| [11] | Maetz, P.; Rodriguez, M. Tetrahedron Lett. 1997, 38, 4221. |
| [12] | Kuo, C.-W.; Zhu, J.-L.; Wu, J.-D.; Chu, C.-M.; Yao, C.-F.; Shia, K.-S. Chem. Commun. 2007, 3, 301. |
| [13] | Mander, L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003, 125, 2400. |
| [14] | Narsaiah, A. V.; Nagaiah, K. Adv. Synth. Catal. 2004, 324, 1271. |
| [15] | For ruthenium, see: (a) Hanada, S.; Motoyama, Y.; Nagshima, H. Eur. J. Org. Chem. 2008, 4097. |
| [15] | (b) Watanabe, Y.; Okuida, F.; Tsuji, Y. J. Mol. Catal. 1990, 58, 87. |
| [16] | For ruthenium, see: (a) Blum, J.; Fisher, A. Tetrahedron Lett. 1970, 11, 1963. |
| [16] | (b) Blum, J.; Fisher, A.; Greener, E. Tetrahedro. 1973, 29, 1073. |
| [17] | For palladium, see: Maffioli, S. I.; Marzorati, E.; Marazzi, A. Org. Lett. 2005, 7, 5237. |
| [18] | For tungsten, see: Campbell, J. A.; McDougald, G.; McNab, H.; Rees, L. V. C.; Tyas, R. G. Synthesis 2007, 3179. |
| [19] | For rhenium, see: (a) Ishihara, K.; Furuya, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2002, 41, 2983. |
| [19] | (b) Furuya, Y.; Ishihara, K.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2007, 80, 400. |
| [20] | For uranium, see: Enthaler, S. Chem.-Eur. J. 2011, 17, 9316. |
| [21] | For vanadium, see: Sueoka, S.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Chem. Commun. 2010, 46, 8243. |
| [22] | Mandal, S. K.; Das, H. S.; Das, S.; Dey, K.; Singh, B.; Haridasan, R. K.; Das, A.; Ahmed, J. Chem. Commun. 2019, 55, 11868. |
| [23] | Bose, D. S.; Jayalakshmi, B. J. Org. Chem. 1999, 64, 1713. |
| [24] | (a) Xue, B.; Sun, H.; Wang, Y.; Zheng, T.; Li, X.; Fuhr, O.; Fenske, D. Catal. Commun. 2016, 86, 148. |
| [24] | (b) Elangovan, S.; QuinteroDuque, S.; Dorcet, V.; Roisnel, T.; Norel, L.; Darcel, C.; Sortais, J.-B. Organometallic. 2015, 34, 4521. |
| [24] | (c) Bezier, D.; Venkanna, G. T.; Sortais, J.-B.; Darcel, C. ChemCatChe. 2011, 3, 1747. |
| [24] | (d) Zhou, S.; Addis, D.; Das, S.; Junge K.; Beller, M. Chem. Commun. 2009, 45, 4883. |
| [24] | (e) Hanada, S.; Motoyama, Y.; Nagashima, H. Eur. J. Org. Chem. 2008, 4097. |
| [24] | (f) Calas, R.; Frainnet, E.; Bazouin, A. Compt. Rend. 1963, 257, 1304. |
| [25] | (a) Enthaler, S.; Inoue, S. Chem.-Asian J. 2012, 7, 169. |
| [25] | (b) Wang, Y.; Fu, L.; Qi, H.; Chen, S.; Li, Y. Asian J. Org. Chem. 2018, 7, 367. |
| [26] | Liu, R.; Bae, M.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 1627. |
| [27] | Bisai, M. K.; Gour, K.; Das, T.; Vanka, K.; Sen, S. S. Dalton Trans. 2021, 50, 2354. |
| [28] | Wu, J.; Darcel, C. ChemCatChe. 2022, 14, e202101874. |
| [29] | Yu, C.; Guo, C.; Jiang, L.; Gong, M.; Luo, Y. Organometallic. 2021, 40, 1201. |
| [30] | Wang, H.; Dong, Y.; Zheng, C.; Wang, X.; Makha, M.; Li, Y. Che. 2018, 4, 2883. |
| [31] | Zhang, T.; Yang, J.; Zhou, Z; Fu, Z.; Cherukupalli, S.; Kang, D.; Zhan, P.; Liu, X. BMC Chem. 2021, 15, 22. |
| [32] | Bontemps, S.; Vendier, L.; Sabo-Etienne, S. Angew. Chem.. Int. Ed. 2012, 51, 1671. |
| [33] | Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Org. Lett. 2009, 11, 2461. |
| [34] | Yu, C.; Guo, C.; Jiang, L.; Gong, M.; Luo, Y. Organometallic. 2021, 40, 1201. |
| [35] | (a) Tsuchiya, D.; Kawagoe, Y.; Moriyama, K.; Togo, H. Org. Lett. 2013, 15, 4194. |
| [35] | (b) Cant, A. A.; Bhalla, R.; Pimlott, S. L.; Sutherland, A. Chem. Commun. 2012, 48, 3993. |
| [35] | (c) Yan, Y.; Sun, S.; Cheng, J. J. Org. Chem. 2017, 82, 12888. |
| [36] | Maddess, M. L.; Carter, R. Synthesi. 2012, 7, 1109. |
| [37] | Falk, A.; Cavalieri, A.; Nichol, G. S.; Vogt, D.; Schmalz, H. Adv. Synth. Catal. 2015, 357, 3317. |
/
| 〈 |
|
〉 |