综述与进展

芳乙酰叠氮的制备及其在有机合成中的应用进展

  • 佘春艳 ,
  • 王安静 ,
  • 刘珊 ,
  • 舒文明 ,
  • 余维初
展开
  • 长江大学化学与环境工程学院 油气田清洁生产与污染物控制工程研究中心 湖北荆州 434023

收稿日期: 2023-07-10

  修回日期: 2023-09-14

  网络出版日期: 2023-10-12

基金资助

国家自然科学基金(21801022)

Preparation of Phenacyl Azides and Their Application Advances in Organic Synthesis

  • Chunyan She ,
  • Anjing Wang ,
  • Shan Liu ,
  • Wenming Shu ,
  • Weichu Yu
Expand
  • Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023
* Corresponding authors. ;

Received date: 2023-07-10

  Revised date: 2023-09-14

  Online published: 2023-10-12

Supported by

National Natural Science Foundation of China(21801022)

摘要

作为一种非常重要的有机叠氮化合物, 芳乙酰叠氮是有机合成中优良的合成子, 可广泛用于构建各种含氮化合物. 它的合成方法简单, 反应活性高, 反应位点多, 不仅可以在一个位点上发生反应, 还可以同时在两个或多个位点上发生反应, 从而使其反应类型相当丰富. 基于近年来芳乙酰叠氮在有机合成中取得了诸多进展, 主要综述了芳乙酰叠氮的各种制备方法以及按照具体的反应类型分类的研究结果, 并对代表性的例子及其反应机理进行了讨论和分析.

本文引用格式

佘春艳 , 王安静 , 刘珊 , 舒文明 , 余维初 . 芳乙酰叠氮的制备及其在有机合成中的应用进展[J]. 有机化学, 2024 , 44(2) : 481 -507 . DOI: 10.6023/cjoc202307009

Abstract

Phenacyl azides, a kind of crucial organic azide, serve as a valuable synthetic substrate in organic synthesis. They have extensive applications in constructing diverse nitrogen-containing compounds. Their straightforward synthetic methods, elevated reactivity and multiple reaction sites enable them to undergo reactions at a single site or simultaneously at multiple sites, resulting in a wide range of reaction types. Based on the significant progress made in organic synthesis in recent years, various preparation methods of phenacyl azides and research results classified according to specific reaction types are mainly reviewed. Representative examples and reaction mechanisms are discussed and analyzed.

参考文献

[1]
Griess P. Philos. Trans. R. Soc. Londo. 1864, 13, 377.
[2]
(a) Madasu, S. B.; Vekariya, N. A.; Koteswaramma, C.; Islam, A.; Sanasi, P. D.; Korupolu, R. B. Org. Process Res. Dev. 2012, 16, 2025.
[2]
(b) Pereira, G. R.; Ferreira, A. C. G.; Costa, F.; Munhoz, V.; Alvarenga, D.; Silva, B. M.; Reis, A. C. C.; Brandao, G. C. Nat. Prod. Res. 2021, 35, 3820.
[3]
Burilov, V. A.; Fatikhova, G. A.; Mironova, D. A.; Solovieva, S. E.; Antipin, I. S. Macroheterocycle. 2015, 8, 409.
[4]
Zhang, Z.; Huang, B.; Qiao, G.; Zhu, L.; Xiao, F.; Chen, F.; Fu, B.; Zhang, Z. Angew. Chem.,Int. Ed. 2017, 56, 4320.
[5]
Tudisco, C.; Fragalà, M. E.; Giuffrida, A. E.; Bertani, F.; Pinalli, R.; Dalcanale, E.; Compagnini, G.; Condorelli, G. G. J. Phys. Chem. . 2016, 120, 12611.
[6]
(a) Tanimoto, H.; Kakiuchi, K. Nat. Prod. Commun. 2013, 8, 1021.
[6]
(b) Huang, D.; Yan, G. Adv. Synth. Catal. 2017, 359, 1600.
[7]
Br?se, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. 2005, 117, 5320.
[8]
Patonay, T.; Konya, K.; Juhasz-Toth, E. Chem. Soc. Rev. 2011, 40, 2797.
[9]
Faiz, S.; Zahoor, A.; Rasool, N.; Yousaf, M.; Mansha, A.; Zia-Ul-Haq, M.; Jaafar, H. Molecule. 2015, 20, 14699.
[10]
Borkotoky, L.; Maurya, R. A. Asian J. Org. Chem. 2022, 11, e202200254.
[11]
(a) Ackrell, J.; Muchowski, J. M.; Galeazzi, E.; Guzman, A. J. Org. Chem. 1986, 51, 3374.
[11]
(b) Jia, F.-C.; Luo, N.; Xu C. Wu A.-X. Chin. J. Org. Chem. 2021, 41, 1527 (in Chinese).
[11]
(贾丰成, 罗娜, 徐程, 吴安心, 有机化学. 2021, 41, 1527.)
[12]
(a) Vitale, P.; Cicco, L.; Messa, F.; Perna, F. M.; Salomone, A.; Capriati, V. Eur. J. Org. Chem. 2019, 2019, 5557.
[12]
(b) Klahn, P.; Erhardt, H.; Kotthaus, A.; Kirsch, S. F. Angew. Chem., nt. Ed. 2014, 53, 7913.
[12]
(c) Uyanik, M.; Sahara, N.; Tsukahara, M.; Hattori, Y.; Ishihara, K. Angew. Chem., nt. Ed. 2020, 59, 17110.
[13]
Patonay, T.; Hoffman, R. V. J. Org. Chem. 1994, 59, 2902.
[14]
(a) Hassner, A.; Stern, M. Angew. Chem., nt. Ed. Engl. 1986, 25, 478.
[14]
(b) Yusubov, M. S.; Funk, T. V.; Yusubova, R. Y.; Zholobova, G.; Kirschning, A.; Park, J. Y.; Chi, K.-W. Synth. Commun. 2009, 39, 3772.
[15]
(a) Louren?o, N. M. T.; Afonso, C. A. M. Tetrahedro. 2003, 59, 789.
[15]
(b) Li, J.; Cao, J.-J.; Wei, J.-F.; Shi, X.-Y.; Zhang, L.-H.; Feng, J.-J.; Chen, Z.-G. Eur. J. Org. Chem. 2011, 2011, 229.
[16]
Sayyahi, S.; Saghanezhad, J. Chin. Chem. Lett. 2011, 22, 300.
[17]
Kiasat, A. R.; Zarinderakht, N.; Sayyahi, S. Chin. J. Chem. 2012, 30, 699.
[18]
Lee, J. C.; Kim, S.; Shin, W. C. Synth. Commun. 2000, 30, 4271.
[19]
Kumar, D.; Sundaree, S.; Rao, V. S. Synth. Commun. 2006, 36, 1893.
[20]
Telvekar, V. N.; Patile, H. V. Synth. Commun. 2010, 41, 131.
[21]
Prakash, O.; Pannu, K.; Prakash, R.; Batra, A. Molecule. 2006, 11, 523.
[22]
Wang, H.-M.; Hou, R.-S.; Wu, J.-L.; Chen, L.-C. J. Chin. Chem. Soc. 2007, 54, 1333.
[23]
Chang, Y.-L.; Chung, C.-L.; Wu, F.-W.; Wang, H.-M.; Hou, R.-S.; Kang, I.-J.; Chen, L.-C. J. Chin. Chem. Soc. 2010, 57, 149.
[24]
Zheng, Z.-J.; Yu, T.-Y.; Xu, P.-F.; Wei, H. Asian J. Org. Chem. 2018, 7, 1579.
[25]
Yadav, J. S.; Subba Reddy, B. V.; Srinivas M. Chem. Lett. 2004, 33, 882.
[26]
Ehrenfreund, J.; Zbiral, E. Tetrahedro. 1972, 28, 1697.
[27]
(a) Nair, V.; Nair, L. G.; George, T. G.; Augustine, A. Tetrahedro. 2000, 56, 7607.
[27]
(b) Keshavarz, M.; Badri, R. Mol. Diversit. 2011, 15, 957.
[28]
Badri, R.; Gorjizadeh, M. Synth. Commun. 2012, 42, 2058.
[29]
Hossain, A.; Vidyasagar, A.; Eichinger, C.; Lankes, C.; Phan, J.; Rehbein, J.; Reiser, O. Angew. Chem., nt. Ed. 2018, 57, 8288.
[30]
(a) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
[30]
(b) Gong, X.; Zhu, C.; Ye, L.-W. Org. Biomol. Chem. 2020, 18, 1843.
[31]
Shee, M.; Shah, S. S.; Singh, N. D. P. Chem.-Eur. J. 2020, 26, 14070.
[32]
(a) Ye, Z.; Zhu, R.; Wang, F.; Jiang, H.; Zhang, F. Org. Lett. 2021, 23, 8240.
[32]
(b) Zhu, Y.; Jiang, C.; Li, H.; Liu, P.; Sun, P. J. Org. Chem. 2022, 87, 11031.
[33]
Hussain, M. I.; Feng, Y.; Hu, L.; Deng, Q.; Zhang, X.; Xiong, Y. J. Org. Chem. 2018, 83, 7852.
[34]
Vita, M. V.; Waser, J. Org. Lett. 2013, 15, 3246.
[35]
More, A. A.; Pathe, G. K.; Parida, K. N.; Maksymenko, S.; Lipisa, Y. B.; Szpilman, A. M. J. Org. Chem. 2018, 83, 2442.
[36]
Sheng, H.; Liu, Q.; Chen, F.; Wang, Z.; Chen, X. Chin. Chem. Lett. 2022, 33, 4298.
[37]
Su, Y.; Petersen, J. L.; Gregg, T. L.; Shi, X. Org. Lett. 2015, 17, 1208.
[38]
Yang, B.; Lu, Z. ACS Catal. 2017, 7, 8362.
[39]
Liardo, E.; Ríos-Lombardía, N.; Morís, F.; González-Sabín, J.; Rebolledo, F. Eur. J. Org. Chem. 2018, 2018, 3031.
[40]
Boyer J. H. J. Am. Chem. Soc. 1951, 73, 5865.
[41]
Boyer, J. H.; Straw, D. J. Am. Chem. Soc. 1953, 75, 1642.
[42]
Schrittwieser, J. H.; Coccia, F.; Kara, S.; Grischek, B.; Kroutil, W.; d'Alessandro, N.; Hollmann, F. Green Chem. 2013, 15, 3318.
[43]
Bretschneider, H.; H?rmann, H. Monatsh. Chem. 1953, 84, 1021.
[44]
Patonay, T.; Micskei, K.; Juhász-Tóth, é.; Fekete, S.; Pardi-Tóth, V. C. ARKIVO. 2009, 2009, 270.
[45]
Knittel D. Z. Naturforsch. 1983, 38b, 930.
[46]
Takeuchi, H.; Yanagida, S.; Ozaki, T.; Hagiwara, S.; Eguchi, S. J. Org. Chem. 1989, 54, 431.
[47]
(a) Mandel, S. M.; Krause Bauer, J. A.; Gudmundsdottir, A. D. Org. Lett. 2001, 3, 523.
[47]
(b) Singh, P. N. D.; Mandel, S. M.; Robinson, R. M.; Zhu, Z.; Franz, R.; Ault, B. S.; Gudmundsdóttir, A. D. J. Org. Chem. 2003, 68, 7951.
[47]
(c) Muthukrishnan, S.; Mandel, S. M.; Hackett, J. C.; Singh, P. N. D.; Hadad, C. M.; Krause, J. A.; Gudmundsdóttir, A. D. J. Org. Chem. 2007, 72, 2757.
[47]
(d) Sarkar, S. K.; Gatlin, D. M.; Das, A.; Loftin, B.; Krause, J. A.; Abe, M.; Gudmundsdottir, A. D. Org. Biomol. Chem. 2017, 15, 7380.
[48]
Carmeli, M.; Rozen, S. J. Org. Chem. 2006, 71, 4585.
[49]
Myers, E. L.; Raines, R. T. Angew. Chem., nt. Ed. 2009, 48, 2359.
[50]
Yokoi, T.; Ueda, T.; Tanimoto, H.; Morimoto, T.; Kakiuchi, K. Chem. Commun. 2019, 55, 1891.
[51]
Kholod, I.; Vallat, O.; Buciumas, A.-M.; Neels, A.; Neier, R. Eur. J. Org. Chem. 2014, 2014, 7865.
[52]
Ren, H.; Dunet, G.; Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2007, 129, 5376.
[53]
(a) Reddy, M. A.; Bhanumathi, N.; Rao, K. R. Chem. Commun. 2001, 19, 1974.
[53]
(b) Kamal, A.; Shaik, A. A.; Sandbhor, M.; Malik, M. S. Tetrahedron: Asymmetry 2004, 15, 935.
[53]
(c) Rocha, L. C.; Seleghim, M. H. R.; Comasseto, J. V.; Sette, L. D.; Porto, A. L. M. Mar. Biotechnol. 2015, 17, 736.
[54]
Del Vecchio, A.; Talbot, A.; Caillé, F.; Chevalier, A.; Sallustrau, A.; Loreau, O.; Destro, G.; Taran, F.; Audisio, D. Chem. Commun. 2020, 56, 11677.
[55]
Reddy, C. N.; Krishna, N. H.; Reddy, V. G.; Alarifi, A.; Kamal, A. Asian J. Org. Chem. 2017, 6, 1498.
[56]
Yu, P.; Wang, Y.; Zeng, Z.; Chen, Y. J. Org. Chem. 2019, 84, 14883.
[57]
Wang, A.-J.; She, C.-Y.; Zhang, Y.-D.; Zhao, L.-H.; Shu, W.-M.; Yu, W.-C. J. Org. Chem. 2022, 87, 16099.
[58]
Peng, Y.-Y.; Zhuo, B.-Y.; Wang, Z.-Q.; Liu, B.; Zhang, F.-X.; Yu, J.-X.; Wang, C.-Y.; Xu, Z.-F.; Li, J.-H. Org. Chem. Front. 2022, 9, 5858.
[59]
Knittel, D.; Hemetsberger, H.; Weidmann, H. Monatsh. Chem. 1970, 101, 157.
[60]
Hemetsberger, H.; Knittel, D. Monatsh. Chem. 1972, 103, 205.
[61]
(a) Patonay, T.; Juhász-Tóth, é.; Bényei, A. Eur. J. Org. Chem. 2002, 2002, 285.
[61]
(b) Martinez-Castaneda, A.; Kedziora, K.; Lavandera, I.; Rodriguez-Solla, H.; Concellon, C.; del Amo, V. Chem. Commun. 2014, 50, 2598.
[61]
(c) Okumu?, S.; Tanyeli, C.; Demir, A. S. Tetrahedron Lett. 2014, 55, 4302.
[61]
(d) Ding, P.-G.; Zhou, F.; Wang, X.; Zhao, Q.-H.; Yu, J.-S.; Zhou, J. Chem. Sci. 2020, 11, 3852.
[62]
Juhász-Tótha, é.; Patonay, T. Eur. J. Org. Chem. 2002, 3055.
[63]
Patonay, T.; Jek?, J.; Juhász-Tóth, é. Eur. J. Org. Chem. 2008, 2008, 1441.
[64]
Babu, T. H.; Kamalraja, J.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2011, 52, 4093.
[65]
Marco, J.; Martínez-Grau, A.; Martín, N.; Seoane, C. Tetrahedron Lett. 1995, 36, 5393.
[66]
Kamalraja, J.; Babu, T. H.; Muralidharan, D.; Perumal, P. T. Synlet. 2012, 23, 1950.
[67]
Kumar, N. P.; Vanjari, Y.; Thatikonda, S.; Pooladanda, V.; Sharma, P.; Sridhar, B.; Godugu, C.; Kamal, A.; Shankaraiah, N. Bioorg. Med. Chem. Lett. 2018, 28, 3564.
[68]
Chimaladenne, V.; Manda, R.; Gudipally, A. R.; Valluru, K. R.; Brahman, P. K.; Somarapu, V. L. Synth. Commun. 2020, 50, 2941.
[69]
Kamalraja, J.; Sowndarya, R.; Perumal, P. T. Synlet. 2014, 25, 2208.
[70]
Dhanasekar, E.; Kannan, T.; Venkatesan, R.; Perumal, P. T.; Kamalraja, J. J. Org. Chem. 2020, 85, 9631.
[71]
Borkotoky, L.; Borra, S.; Maurya, R. A. Eur. J. Org. Chem. 2022, 2022, e202101237.
[72]
Smith, C. D.; Baxendale, I. R.; Lanners, S.; Hayward, J. J.; Smith, S. C.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1559.
[73]
Kumar, D.; Patel, G.; Reddy, V. B. Synlet. 2009, 399.
[74]
(a) Shao, C.; Cheng, G.; Su, D.; Xu, J.; Wang, X.; Hu, Y. Adv. Synth. Catal. 2010, 352, 1587.
[74]
(b) Shao, C.; Wang, X.; Xu, J.; Zhao, J.; Zhang, Q.; Hu, Y. J. Org. Chem. 2010, 75, 7002.
[74]
(c) Shao, C.; Zhu, R.; Luo, S.; Zhang, Q.; Wang, X.; Hu, Y. Tetrahedron Lett. 2011, 52, 3782.
[75]
(a) Alvarenga, N.; Porto, A. L. M. Biocatal. Biotransform. 2017, 35, 388.
[75]
(b) Cha, H.; Lee, K.; Chi, D. Y. Tetrahedro. 2017, 73, 2878.
[76]
Wang, K.; Bi, X.; Xing, S.; Liao, P.; Fang, Z.; Meng, X.; Zhang, Q.; Liu, Q.; Ji, Y. Green Chem. 2011, 13, 562.
[77]
?tv?s, S. B.; Mándity, I. M.; Kiss, L.; Fül?p, F. Chem.-Asian J. 2013, 8, 800.
[78]
Zheng, L.; Wang, Y.; Meng, X.; Chen, Y. Catal. Commun. 2021, 148, 106165.
[79]
Kotovshchikov, Y. N.; Latyshev, G. V.; Beletskaya, I. P.; Lukashev, N. V. Synthesi. 2018, 50, 1926.
[80]
Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2011, 21, 7273.
[81]
Butler, C. R.; Bendesky, J.; Schoffstall, A. M. Molecule. 2021, 26, 5589.
[82]
Brisbois, R. G.; Bergan, A. M.; Ellison, A. J.; Griffin, P. Y.; Hackbarth, K. C.; Larson, S. R. Tetrahedron Lett. 2013, 54, 272.
[83]
Maurya, R. A.; Adiyala, P. R.; Chandrasekhar, D.; Reddy, C. N.; Kapure, J. S.; Kamal, A. ACS Comb. Sci. 2014, 16, 466.
[84]
Gour, J.; Gatadi, S.; Pooladanda, V.; Ghouse, S. M.; Malasala, S.; Madhavi, Y. V.; Godugu, C.; Nanduri, S. Bioorg. Chem. 2019, 93, 103306.
[85]
Fr?yen P. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 60, 81.
[86]
Molina, P.; Fresneda, P. M.; Almendros, P. Synthesi. 1993, 54.
[87]
(a) Dhar, T. G. M.; Guo, J.; Shen, Z.; Pitts, W. J.; Gu, H. H.; Chen, B.-C.; Zhao, R.; Bednarz, M. S.; Iwanowicz, E. J. Org. Lett. 2002, 2091.
[87]
(b) Bursavich, M. G.; Parker, D. P.; Willardsen, J. A.; Gao, Z.-H.; Davis, T.; Ostanin, K.; Robinson, R.; Peterson, A.; Cimbora, D. M.; Zhu, J.-F.; Richards, B. Biorg. Med. Chem. Lett. 2010, 20, 1677.
[87]
(c) Suh, J. H.; Yum, E. K.; Cho, Y. S. Chem. Pharm. Bull. 2015, 63, 573.
[88]
Klug, T.; Cronin, A.; O'Brien, E.; Schioldager, R.; Johnson, H.; Gleason, C.; Schmid, C.; Soderberg, N.; Manjunath, A.; Liyanage, D.; Lazaro, H.; Kimball, J. J.; Eagon, S. Tetrahedron Lett. 2022, 88, 153555.
[89]
Oka, Y.; Yabuuchi, T.; Sekiguchi, Y. Heterocycle. 2013, 87, 1881.
[90]
Jadala, C.; Prasad, B.; Prasanthi, A. V. G.; Shankaraiah, N.; Kamal, A. RSC Adv. 2019, 9, 30659.
[91]
Boyer, J. H.; Straw, D. J. Am. Chem. Soc. 1952, 74, 4506.
[92]
Batanero, B.; Escudero, J.; Barba, F. Org. Lett. 1999, 1521.
[93]
Nakajima, M.; Loeschorn, C. A.; Cimbrelo, W. E.; Anselme, J. P. Org. Prep. Proced. Int. 1980, 12, 265.
[94]
Benati, L.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S.; Zanardi, G.; Calestani, G. Tetrahedro. 2002, 58, 3485.
[95]
(a) Fan, X.; Zhang, Y. Tetrahedron Lett. 2002, 43, 1863.
[95]
(b) Fan, X.; Zhang, X.; Zhang, Y. J. Chem. Res. 2005, 750.
[96]
Chen, J.; Chen, W.; Yu, Y.; Zhang, G. Tetrahedron Lett. 2013, 54, 1572.
[97]
Vitale, P.; Cicco, L.; Cellamare, I.; Perna, F. M.; Salomone, A.; Capriati, V. Beilstein J. Org. Chem. 2020, 16, 1915.
[98]
(a) Majo, V. J.; Perumal, P. T. Tetrahedron Lett. 1997, 38, 6889.
[98]
(b) Majo, V. J.; Perumal, P. T. J. Org. Chem. 1998, 63, 7136.
[99]
Reddy, D. S.; Rajale, T. V.; Shivakumar, K.; Iqbal, J. Tetrahedron Lett. 2005, 46, 979.
[100]
Chen, R. E.; Zhou, X. H.; Zhong, W. H.; Su, W. K. Org. Prep. Proced. Int. 2008, 40, 579.
[101]
Shah, S. R.; Navathe, S. S.; Dikundwar, A. G.; Guru Row, T. N.; Vasella, A. T. Eur. J. Org. Chem. 2013, 2013, 264.
[102]
Zhang, Y.; Luo, M.; Li, Y.; Wang, H.; Ren, X.; Qi, C. Mol. Diversit. 2018, 22, 183.
[103]
Ren, M.-T.; Li, M.; Wang, A.-J.; Gao, J.; Zhang, X.-X.; Shu, W.-M. Eur. J. Org. Chem. 2020, 2020, 2233.
[104]
Zhang, H.; Riomet, M.; Roller, A.; Maulide, N. Org. Lett. 2020, 22, 2376.
[105]
Belei, D.; Bicu, E.; Jones, P. G.; Birsa, M. L. Synlet. 2010, 931.
[106]
Chen, J.; Ni, H.; Chen, W.; Zhang, G.; Yu, Y. Tetrahedro. 2013, 69, 8069.
[107]
Kamal, A.; Reddy, C. N.; Satyaveni, M.; Chandrasekhar, D.; Nanubolu, J. B.; Singarapu, K. K.; Maurya, R. A. Chem. Commun. 2015, 51, 10475.
[108]
Reddy, C. N.; Sathish, M.; Adhikary, S.; Nanubolu, J. B.; Alarifi, A.; Maurya, R. A.; Kamal, A. Org. Biomol. Chem. 2017, 15, 2730.
[109]
Visweswara Sastry, K. N.; Prasad, B.; Nagaraju, B.; Ganga?Reddy, V.; Alarifi, A.; Babu, B. N.; Kamal, A. ChemistrySelec. 2017, 2, 5378.
[110]
Prasad, B.; Phanindrudu, M.; Nanubolu, J. B.; Kamal, A.; Tiwari, D. K. Chem. Commun. 2021, 57, 9542.
[111]
Prasad, B.; Phanindrudu, M.; Tiwari, D. K.; Kamal, A. J. Org. Chem. 2019, 84, 12334.
[112]
Dagar, A.; Seo, Y.; Namkung, W.; Kim, I. Org. Biomol. Chem. 2020, 18, 3324.
[113]
Liu, S.; Wang, A. J.; Li, M.; Zhang, J.; Yin, G. D.; Shu, W. M.; Yu, W. C. J. Org. Chem. 2022, 87, 11253.
文章导航

/