研究论文

钛催化的烯烃制备1,1-二硼化合物

  • 李思达 ,
  • 崔鑫 ,
  • 舒兴中 ,
  • 吴立朋
展开
  • a 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000
    b 兰州大学化学化工学院 功能有机分子化学国家重点实验室 兰州 730000
    c 中国科学院大学 北京 100049
    d 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121
共同第一作者

收稿日期: 2023-09-21

  修回日期: 2023-10-04

  网络出版日期: 2023-10-12

基金资助

国家自然科学基金(22271295); 及甘肃省自然科学基金重点(23JRRA606)

Titanium-Catalyzed Synthesis of 1,1-Diborylalkanes from Aryl Alkenes

  • Sida Li ,
  • Xin Cui ,
  • Xing-Zhong Shu ,
  • Lipeng Wu
Expand
  • a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
    b State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000
    c University of Chinese Academy of Sciences, Beijing 100049
    d Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121
These authors contributed equally to this work.
* Corresponding author. E-mail: ;
* Corresponding author. E-mail: ;

Received date: 2023-09-21

  Revised date: 2023-10-04

  Online published: 2023-10-12

Supported by

National Natural Science Foundation of China(22271295); Natural Science Foundation of Gansu Province Key Project(23JRRA606)

摘要

开发了一种适用范围广且在温和条件下就可以进行的芳基烯烃和频哪醇硼烷(HBpin)之间1,1-二硼化反应制备1,1-二硼化合物的新方法. 反应成功的关键是利用丰产金属钛(Cp2TiCl2)作为催化剂, 并且在甲醇锂(MeOLi)的活化作用下进行. 推测Cp2TiCl2/MeOLi/HBpin体系中原位生成的Ti-H物种是催化该反应进行的主要活性物种.

关键词: ; 烯烃; 1,1-二硼化; 催化

本文引用格式

李思达 , 崔鑫 , 舒兴中 , 吴立朋 . 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024 , 44(2) : 631 -637 . DOI: 10.6023/cjoc202309021

Abstract

A milder and general atom-economical synthesis of 1,1-diborylalkanes from aryl alkenes with pinacolborane (HBpin) at room temperature is achieved. The key to success is using an earth-abundant titanium-based catalyst (Cp2TiCl2) with the help of lithium methoxide (MeOLi) as the activator. It is proposed that the in-situ formation of Ti-H species from Cp2TiCl2/MeOLi/HBpin system is the vital active species for the catalytic results.

参考文献

[1]
(a) Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.; Gulyas, H.; Fernandez, E. Angew. Chem.. Int. Ed. 2011, 50, 7158.
[1]
(b) Zhang, L.; Huang, Z. J. Am. Chem. Soc. 2015, 137, 15600.
[1]
(c) Morinaga, A.; Nagao, K.; Ohmiya, H.; Sawamura, M. Angew. Chem.. Int. Ed. 2015, 54, 15859.
[1]
(d) Zuo, Z. Q.; Huang, Z. Org. Chem. Front. 2016, 3, 434.
[1]
(e) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S. Scienc. 2017, 356, eaam7355.
[1]
(f) Hu, J.; Zhao, Y.; Shi, Z. Nat. Catal. 2018, 1, 860.
[1]
(g) Lv, W.-X.; Li, Q.; Li, J.-L.; Li, Z.; Lin, E.; Tan, D.-H.; Cai, Y.-H.; Fan, W.-X.; Wang, H. Angew. Chem.. Int. Ed. 2018, 57, 16544.
[1]
(h) Liu, X.; Ming, W.; Zhang, Y.; Friedrich, A.; Marder, T. B. Angew. Chem.. Int. Ed. 2019, 58, 18923.
[1]
(i) Zhao, B.; Li, Z.; Wu, Y.; Wang, Y.; Qian, J.; Yuan, Y.; Shi, Z. Angew. Chem.. Int. Ed. 2019, 58, 9448.
[1]
(j) Yukimori, D.; Nagashima, Y.; Wang, C.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2019, 141, 9819.
[1]
(k) Yamamoto, T.; Ishibashi, A.; Suginome, M. Org. Lett. 2019, 21, 6235.
[1]
(l) Li, Y.; Pang, H.; Wu, D.; Li, Z.; Wang, W.; Wei, H.; Fu, Y.; Yin, G. Angew. Chem.. Int. Ed. 2019, 58, 8872.
[1]
(m) Gao, T. T.; Zhang, W. W.; Sun, X.; Lu, H. X.; Li, B. J. J. Am. Chem. Soc. 2019, 141, 4670.
[1]
(n) Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 14104.
[1]
(o) Liu, X.; Ming, W.; Friedrich, A.; Kerner, F.; Marder, T. B. Angew. Chem.. Int. Ed. 2020, 59, 304.
[2]
(a) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033.
[2]
(b) Lee, J. C.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894.
[2]
(c) Takaya, J.; Iwasawa, N. ACS Catal. 2012, 2, 1993.
[2]
(d) Feng, X.; Jeon, H.; Yun, J. Angew. Chem.. Int. Ed. 2013, 52, 3989.
[2]
(e) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918.
[2]
(f) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 16140.
[2]
(g) Neeve, E. C.; Geier, S. J.; Mkhalid, I. A.; Westcott, S. A.; Marder, T. B. Chem. Rev. 2016, 116, 9091.
[2]
(h) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew. Chem.. Int. Ed. 2016, 55, 1498.
[2]
(i) Murray, S. A.; Green, J. C.; Tailor, S. B.; Meek, S. J. Angew. Chem.. Int. Ed. 2016, 55, 9065.
[2]
(j) Zhao, H.; Tong, M.; Wang, H.; Xu, S. Org. Biomol. Chem. 2017, 15, 3418.
[2]
(k) Miralles, N.; Maza, R. J.; Fernández, E. Adv. Synth. Catal. 2018, 360, 1306.
[2]
(l) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
[2]
(m) Wu, C. Q.; Wang, J. B. Tetrahedron Lett. 2018, 59, 2128.
[2]
(n) Sun, W.; Wang, L.; Xia, C.; Liu, C. Angew. Chem.. Int. Ed. 2018, 57, 5501.
[3]
(a) Matteson, D. S.; Moody, R. J. J. Am. Chem. Soc. 1977, 99, 3196.
[3]
(b) Coombs, J. R.; Zhang, L.; Morken, J. P. Org. Lett. 2015, 17, 1708.
[4]
(a) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 10581.
[4]
(b) Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem.. Int. Ed. 2016, 55, 9690.
[4]
(c) Liu, X.; Deaton, T. M.; Haeffner, F.; Morken, J. P. Angew. Chem.. Int. Ed. 2017, 56, 11485.
[5]
(a) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13, 3368.
[5]
(b) Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. J. Org. Chem. 2012, 77, 4826.
[5]
(c) Zhang, Z. Q.; Yang, C. T.; Liang, L. J.; Xiao, B.; Lu, X.; Liu, J. H.; Sun, Y. Y.; Marder, T. B.; Fu, Y. Org. Lett. 2014, 16, 6342.
[5]
(d) Li, F.; Zhang, Z. Q.; Lu, X.; Xiao, B.; Fu, Y. Chem. Commun. 2017, 53, 3551.
[6]
(a) Li, H.; Zhang, Z.; Shangguan, X.; Huang, S.; Chen, J.; Zhang, Y.; Wang, J. Angew. Chem.. Int. Ed. 2014, 53, 11921.
[6]
(b) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918.
[7]
(a) Ebrahim-Alkhalil, A.; Zhang, Z. Q.; Gong, T. J.; Su, W.; Lu, X. Y.; Xiao, B.; Fu, Y. Chem. Commun. 2016, 52, 4891.
[7]
(b) Murray, S. A.; Liang, M. Z.; Meek, S. J. J. Am. Chem. Soc. 2017, 139, 14061.
[8]
(a) Joannou, M. V.; Moyer, B. S.; Goldfogel, M. J.; Meek, S. J. Angew. Chem.. Int. Ed. 2015, 54, 14141.
[8]
(b) Joannou, M. V.; Moyer, B. S.; Meek, S. J. J. Am. Chem. Soc. 2015, 137, 6176.
[8]
(c) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18, 1210.
[8]
(d) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem.. Int. Ed. 2017, 56, 11584.
[9]
(a) Shi, Y.; Hoveyda, A. H. Angew. Chem.. Int. Ed. 2016, 55, 3455.
[9]
(b) Liu, X.; Sun, C.; Mlynarski, S.; Morken, J. P. Org. Lett. 2018, 20, 1898.
[10]
Matteson, D. S.; Moody, R. J. Organometallic. 1982, 1, 20.
[11]
(a) Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. Angew. Chem.. Int. Ed. 2001, 40, 790.
[11]
(b) Kurahashi, T.; Hata, T.; Masai, H.; Kitagawa, H.; Shimizu, M.; Hiyama, T. Tetrahedro. 2002, 58, 6381.
[11]
(c) Shimizu, M.; Schelper, M.; Nagao, I.; Shimono, K.; Kurahashi, T.; Hiyama, T. Chem. Lett. 2006, 35, 1222.
[12]
(a) Endo, K.; Hirokami, M.; Shibata, T. Synlet. 2009, 1331.
[12]
(b) Barbeyron, R.; Benedetti, E.; Cossy, J.; Vasseur, J. J.; Arseniyadis, S.; Smietana, M. Tetrahedro. 2014, 70, 8431.
[13]
(a) Cho, S. H.; Hartwig, J. F. Chem. Sci. 2014, 5, 694.
[13]
(b) Palmer, W. N.; Obligacion, J. V.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 766.
[13]
(c) Yamamoto, T.; Ishibashi, A.; Suginome, M. Org. Lett. 2019, 21, 6235.
[14]
(a) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
[14]
(b) Li, J.; Wang, H.; Qiu, Z.; Huang, C.-Y.; Li, C.-J. J. Am. Chem. Soc. 2020, 142, 13011.
[15]
Wang, B.; Zhang, X.; Cao, Y.; Zou, L.; Qi, X.; Lu, Q. Angew. Chem.. Int. Ed. 2023, 62, e202218179.
[16]
(a) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am. Chem. Soc. 1992, 114, 8863.
[16]
(b) Burgess, K.; Van der Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. J. Am. Chem. Soc. 1992, 114, 9350.
[16]
(c) Westcott, S. A.; Marder, T. B.; Baker, R. T. Organometallic. 1993, 12, 975.
[16]
(d) Garon, C. N.; McIsaac, D. I.; Vogels, C. M.; Decken, A.; Williams, I. D.; Kleeberg, C.; Marder, T. B.; Westcott, S. A. Dalton Trans. 2009, 1624.
[16]
(e) Wu, J. Y.; Moreau, B.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 12915.
[16]
(f) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2014, 5, 411.
[16]
(g) Wang, G.; Liang, X.; Chen, L.; Gao, Q.; Wang, J. G.; Zhang, P.; Peng, Q.; Xu, S. Angew. Chem.. Int. Ed. 2019, 58, 8187.
[16]
(h) Chen, X.; Cheng, Z. Y.; Lu, Z. ACS Catal. 2019, 9, 4025.
[17]
Li, L.; Gong, T.; Lu, X.; Xiao, B.; Fu, Y. Nat. Commun. 2017, 8, 345.
[18]
(a) Teo, W. J.; Ge, S. Angew. Chem.. Int. Ed. 2018, 57, 12935.
[18]
(b) Teo, W. J.; Ge, S. Angew. Chem. Int. Ed. 2018, 57, 1654.
[19]
Wang, X.; Cui, X.; Li, S.; Wang, Y.; Xia, C.; Jiao, H.; Wu, L. Angew. Chem.. Int. Ed. 2020, 59, 13608.
[20]
Man?en, M.; Schafer, L. L. Chem. Soc. Rev. 2020, 49, 6947.
[21]
(a) Uwe Rosenthal V. V. B. In Titanium and Zirconium in Organic Synthesis, Wiley-VCH, Weinheim, 2002, pp. 355-389.
[21]
(b) Oakes, D. C. H.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Inorg. Chem. 2006, 45, 3476.
[21]
(c) Hayatifar, M.; Pampaloni, G.; Bernazzani, L.; Capacchione, C.; Kissin, Y. V.; Raspolli Galletti, A. M. Polym. Int. 2014, 63, 560.
[21]
(d) Ma, Y.; Lobkovsky, E. B.; Coates, G. W. Dalton Trans. 2015, 44, 12265.
[21]
(e) Ryken, S. A.; Schafer, L. L. Acc. Chem. Res. 2015, 48, 2576.
[22]
(a) Bareille, L.; Becht, S.; Cui, J. L.; Le Gendre, P.; Mo?se, C. Organometallic. 2005, 24, 5802.
[22]
(b) Garcia, J.; Meyer, D. J. M.; Guillaneux, D.; Moreau, J. J. E.; Wong Chi Man, M. J. Organomet. Chem. 2009, 694, 2427.
[23]
(a) Cao, C.; Ciszewski, J. T.; Odom, A. L. Organometallic. 2001, 20, 5011.
[23]
(b) Heutling, A.; Pohlki, F.; Bytschkov, I.; Doye, S. Angew. Chem.. Int. Ed. 2005, 44, 2951.
[23]
(c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
[24]
Perrier, A.; Comte, V.; Mo?se, C.; Le Gendre, P. Chem.-Eur. J. 2010, 16, 64.
[25]
(a) Burgess, K.; van der Donk, W. A. Tetrahedron Lett. 1993, 34, 6817.
[25]
(b) He, X.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 1696.
[25]
(c) Hartwig, J. F.; Muhoro, C. N. Organometallic. 2000, 19, 30.
[26]
Bajgur, C. S.; Tikkanen, W.; Petersen, J. L. Inorg. Chem. 1985, 24, 2539.
[27]
Molander, G. A.; Brown, A. R. J. Org. Chem. 2006, 71, 9681.
[28]
Liu, H.; Guo, Q.; Chen, C.; Wang, M.Xu. Z. Org. Chem. Front. 2018, 5, 1522.
文章导航

/