综述与进展

巢式-碳硼烷硼氢键官能化反应研究进展

  • 付雅彤 ,
  • 孙超凡 ,
  • 张丹 ,
  • 金成国 ,
  • 陆居有
展开
  • a 宜宾学院材料与化学工程学部 四川宜宾 644000
    b 海南大学化学化工学院 海口 570228

收稿日期: 2023-07-10

  修回日期: 2023-09-14

  网络出版日期: 2023-10-26

基金资助

国家自然科学基金(22161015); 海南省自然科学基金(221RC448)

Recent Progress in B—H Bond Functionalization of nido-Carboranes

  • Yatong Fu ,
  • Chaofan Sun ,
  • Dan Zhang ,
  • Chengguo Jin ,
  • Juyou Lu
Expand
  • a Materials and Chemical Engineering Department, Yibin University, Yibin, Sichuan 644000
    b School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228
* Corresponding author.

Received date: 2023-07-10

  Revised date: 2023-09-14

  Online published: 2023-10-26

Supported by

National Natural Science Foundation of China(22161015); Hainan Provincial Natural Science Foundation of China(221RC448)

摘要

巢式-碳硼烷是医学、材料科学和有机金属/配位化学等领域中多功能的重要砌块. 近年来, 巢式-碳硼烷的硼氢键直接活化及官能化反应受到了广泛关注. 由于碳硼烷通常含有十个化学环境相似的硼氢键, 因此区域选择控制一直是碳硼烷硼氢键活化的一个长期挑战. 近年来, 巢式-碳硼烷开口平面上的硼氢键官能化取得了重大进展, 而非开口球面上的硼氢键选择性活化依然具有挑战性. 总结了巢式-碳硼烷的区域选择性硼氢键官能化反应的研究进展, 从开口面和非开口面硼氢键活化两个角度进行梳理.

本文引用格式

付雅彤 , 孙超凡 , 张丹 , 金成国 , 陆居有 . 巢式-碳硼烷硼氢键官能化反应研究进展[J]. 有机化学, 2024 , 44(2) : 438 -447 . DOI: 10.6023/cjoc202307006

Abstract

nido-Carboranes are versatile building blocks in medicine, materials science, and organometallic/coordination chemistry. Recently, direct B—H activation and functionalization of nido-carboranes have received much attention. Achieving regioselectivity in polyhedral cage B—H activation among ten chemically similar B—H vertices is a long-standing challenge in carborane chemistry. In this context, the activation of exo-cage B—H vertices on the open C2B3 pentagonal plane of nido-carboranes has been extensively studied. However, few direct activation reactions of B—H vertices that are located on the closed polyhedral sphere in nido-carborane have been reported. The recent progress on the regioselective B—H bond functionalization reaction of nido-carboranes is summarized. This topic is categorized into open plane exo-B—H activation and polyhedral sphere B—H activation.

参考文献

[1]
Wiesboeck, R. A.; Hawthorne, M. F. J. Am. Chem. Soc. 1964, 86, 1642.
[2]
(a) Batsanov, A. S.; Clegg, W.; Copley, R. C. B.; Fox, M. A.; Gill, W. R.; Grimditch, R. S.; Hibbert, T. G.; Howard, J. A. K.; Macbride, J. A. H.; Wade, K. Polyhedro. 2006, 25, 300.
[2]
(b) Powell, C. L.; Schulze, M.; Black, S. J.; Thompson, A. S.; Threadgill, M. D. Tetrahedron Lett. 2007, 48, 1251.
[2]
(c) Prokhorov, A. M.; Kozhevnikov, D. N.; Rusino, V. L. Organometallic. 2006, 25, 2972.
[3]
Ristori, S.; Salvati, A.; Martini, G. J. Am. Chem. Soc. 2007, 129, 2728.
[4]
Barth, R. F.; Mi, P.; Yang, W.-L. Cancer Commun. 2018, 38, 1.
[5]
Hawthorne, M. F.; Young, D. C.; Wegner, P. A. J. Am. Chem. Soc. 1965, 87, 1818.
[6]
Issa, F.; Kassiou, M.; Rendina, L. M. Chem. Rev. 2011, 111, 5701.
[7]
(a) Slough, W. J.; Kandalam, A. K.; Pandey, R. J. Chem. Phys. 2010, 132, 104304.
[7]
(b) Chuiko, S. V.; Sokolovskii, F. S. Russ. J. Phys. Chem. . 2009, 28, 49.
[7]
(c) Nechai, G. V.; Sokolovskii, F. S.; Chuiko, S. V. Russ. J. Phys. Chem. . 2009, 28, 46.
[8]
Kang, H. C.; Lee, S. S.; Knobler, C. B. Inorg. Chem. 1991, 30, 2024.
[9]
(a) Mizusawa, E. A.; Thompson, M. R.; Hawthorne, M. F. Inorg. Chem. 1985, 24, 1911.
[9]
(b) Pak, R. H.; Kane, R. R.; Knobler, C. B. Inorg. Chem. 1994, 33, 5355.
[9]
(c) Santos, E. C.; Pinkerton, A. B.; Kinkead, S. A. Polyhedro. 2000, 19, 1777.
[9]
(d) Rudakov, D. A.; Potkin, V. I.; Dikusar, E. A. Russ. Chem. Bull. 2007, 56, 922.
[10]
Rudakova, D. A.; Shirokiia, V. L.; Potkin, V. I. Russ. J. Electrochem. 2006, 42, 280.
[11]
Fox, M. A.; Hughes, A. K.; Malget, J. M. J. Chem. Soc.. Dalton Trans. 2002, 3505.
[12]
Tutusau, O.; Teixidor, F.; Nuez, R. J. Organomet. Chem. 2002, 657, 247.
[13]
Frank, R.; Grell, T.; Hiller, M.; Hawkins, H. E. Dalton Trans. 2012, 41, 6155.
[14]
Zakharkin, L. I.; Grandberg, N. V.; Antonovich, V. A. Izv. Akad. Nauk SSSR. Ser. Khim. 1976, 1830.
[15]
Zakharkin, L. I.; Ol’shevskaya, V. A.; Zhigareva, G. G.; Antonovich, V. A.; Petrovskii, P. V.; Yanovskii, A. I.; Polyakov, A. V.; Struchkov, Y. T. Metalloorg. Khim. 1989, 2, 1274.
[16]
Frank, R.; Auer, H.; Hawkins, E. J. Organomet. Chem. 2013, 747, 217.
[17]
Vinogradov, M. M.; Nelyubina, Y. V.; Aliyeu, T. M. Polyhedro. 2022, 214, 115654.
[18]
Kang, H. C.; Lee, S. S.; Knobler, C. B. Inorg. Chem. 1991, 30, 2024.
[19]
Rudakov, D. A.; Potkin, V. I.; Dikusar, E. A. Russ. Chem. Bull. 2007, 56, 922.
[20]
Meshcheryakov, V. I.; Kitaev, P. S.; Lyssenko, K. A. J. Organomet. Chem. 2005, 690, 4745.
[21]
Jasper, S. A.; Mattern, J.; Huffman, J. C. Polyhedro. 2007, 26, 3793.
[22]
Frank, R.; Auer, H.; Hawkins, E. J. Organomet. Chem. 2013, 747, 217.
[23]
Stogniyi, M. Y.; Erokhinai, S. A.; Suponitskyi, K. Y. New J. Chem. 2018, 42, 17958.
[24]
Timofeevs, V.; Hidkova, O. B.; Prikaznova, E. A. J. Organomet. Chem. 2014, 757, 21.
[25]
Yang, Z.-M; Zhao, W.-J; Liu, W.; Wei, X.; Chen, M.; Zhang, X.; Zhang, X.-L.; Liang, Y.; Lu, C.-S.; Yan, H. Angew. Chem. 2019, 131, 12012.
[26]
Chen, M.; Zhao, D.; Xu, J.; Li, C.-X.; Lu, C.-S.; Yan, H. Angew. Chem.. Int. Ed. 2021, 60, 7838.
[27]
Yang, L.; Jei, B.-B.; Scheremetjew, A.; Kuniyil, R.; Ackermann, L. Angew. Chem.. Int. Ed. 2020, 60, 1482.
[28]
Huang, R.-H.; Zhao, W.-J.; Xu, S.-W.; Xu, J.-K.; Li, C.-X.; Lu, C.-S.; Yan, H. Chem. Commun. 2021, 57, 8580.
[29]
Mirabelli, M. G. L.; Sneddon, L. G. J. Am. Chem. Soc. 1988, 110, 449.
[30]
Zhang, C.-Y.; Cao, K.; Xu, T.-T.; Wu, J.; Jiang, L.-H.; Yang, J.-X. Chem. Commun. 2019, 55, 830.
[31]
Han, G.; Baek, Y.; Lee, K. Org. Lett. 2021, 23, 416.
[32]
Sun, F.-X.; Tan, S.-M.; Cao, H.-J.; Xu, J.-K.; Bregadze, V. I.; Tu, D. S.; Lu, C.-S.; Yan, H. Angew. Chem.. Int. Ed. 2022, 61, e202207125.
[33]
Sun, F.-X; Tan, S.-M; Cao, H.-J.; Lu, C.-S.; Tu, D.-S.; Poater, J.; Solà, J.; Yan, H. J. Am. Chem. Soc. 2023, 145, 3577.
[34]
Yang, Z.-Y.; Sun, C.-F.; Wei, X.; Lu, J.; Lu, J.-Y. ChemCatChe. 2022, 14, 1867.
[35]
Sun, C.-F.; Lu, J.-Y.; Lu, J. Inorg. Chem. 2022, 61, 9623.
文章导航

/