综述与进展

联烯胺化合物的区域选择性双官能团化

  • 张剑 ,
  • 梁万洁 ,
  • 杨艺 ,
  • 闫法超 ,
  • 刘会
展开
  • a 山东理工大学化学化工学院 山东淄博 255049
    b 中国疾病预防控制中心环境与健康相关产品安全所 北京 100021
    c 山东安得医疗用品股份有限公司 淄博 255000

收稿日期: 2023-08-04

  修回日期: 2023-10-05

  网络出版日期: 2023-10-26

基金资助

国家自然科学基金(22078178)

Regiocontrollable Difunctionalization of N-Allenamines

  • Jian Zhang ,
  • Wanjie Liang ,
  • Yi Yang ,
  • Fachao Yan ,
  • Hui Liu
Expand
  • a School of Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049
    b China Center for Disease Control and Prevention Environmental and Health Related Product Safety Institute, Beijing 100021
    c Shandong Ande Healthcare Apparatus Co., Ltd., Zibo, Shandong 255000
* Corresponding author. ,

Received date: 2023-08-04

  Revised date: 2023-10-05

  Online published: 2023-10-26

Supported by

National Natural Science Foundation of China(22078178)

摘要

联烯胺作为一种富电子联烯类化合物, 由于其具有不同的反应位点和较高的活性, 近年来受到了广泛的关注. 高效可控地实现联烯胺化合物的区域选择性官能团化, 可以成功构建多类有价值的分子骨架. 主要讨论了近几年来在联烯胺化合物的区域选择性双官能团化领域的研究进展, 并详细讨论了多数转化的反应机理.

本文引用格式

张剑 , 梁万洁 , 杨艺 , 闫法超 , 刘会 . 联烯胺化合物的区域选择性双官能团化[J]. 有机化学, 2024 , 44(2) : 335 -348 . DOI: 10.6023/cjoc202309006

Abstract

As an electron-rich diene compound, N-allenamine has received wide spread attention in recent years due to its different reaction sites and high reactivity. Efficient and controllable regioselective functionalization of N-allenamines can successfully construct functionalized molecules. The research progress in the field of regioselective bifunctionalization of N-allenamines in recent years is mainly discussed, and the reaction mechanisms of most conversions in detail are discussed.

参考文献

[1]
Shimizu, Y.; Kanai, M. Tetrahedron Lett. 2014, 55, 3727.
[2]
Zhang, F.-G.; Ma, J.-A. Chin. J. Org. Chem. 2020, 40, 1082 (in Chinese).
[2]
(张发光, 马军安, 有机化学. 2020, 40, 1082.)
[3]
Mascaren?as, J.; Varela, I.; Lo?pez, F. Acc. Chem. Res. 2019, 52, 465.
[4]
Brummond, K. M.; Kent, J. L. Tetrahedro. 2000, 56, 3263.
[5]
Yao, M.-H.; Xu, X.-F. Chin. J. Org. Chem. 2021, 41, 2916 (in Chinese).
[5]
(姚铭瀚, 徐新芳, 有机化学. 2021, 41, 2916.)
[6]
Chen, S.-W.; Xu, X. Chin. J. Org. Chem. 2023, 43, 1213 (in Chinese).
[6]
(陈绍维, 沈晓, 有机化学. 2023, 43, 1213.)
[7]
Blieck, R.; Taillefer, M.; Monnier, F. Chem. Rev. 2020, 120, 13545.
[8]
Chen, L.; Yu, J.; Tang, S.; Shao, Y.; Sun, J. Org. Lett. 2019, 21, 9050.
[9]
Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862.
[10]
Xiong, H.; Hsung, R. P.; Wei, L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell, B. Org. Lett. 2000, 2, 2869.
[11]
Zbieg, J. R.; McInturff, E. L.; Krische, M. J. Org. Lett. 2010, 12, 2514.
[12]
Le Strat, F.; Maddaluno, J. Org. Lett. 2002, 4, 2791.
[13]
Hayashi, R.; Hsung, R. P.; Feltenberger, J. B.; Lohse, A. G. Org. Lett. 2009, 11, 2125.
[14]
Geng D.-G. Chin. J. Org. Chem. 2019, 39, 301 (in Chinese).
[14]
(耿佃国, 有机化学. 2019, 39, 301.)
[15]
Kimura, M.; Horino, Y.; Wakamiya, Y.; Okajima, T.; Tamaru, Y. J. Am. Chem. Soc. 1997, 119, 10869.
[16]
Xiong, H.; Huang, J.; Ghosh, S. K.; Hsung, R. P. J. Am. Chem. Soc. 2003, 125, 12694.
[17]
Lohse, A. G.; Hsung, R. P. Org. Lett. 2009, 11, 3430.
[18]
Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigu?enza, J.; Díez, E.; Alonso, I.; Fernández, R.; Lassaletta, J. M.; López, F.; Mascaren?as, J. L. J. Am. Chem. Soc. 2012, 134, 14322.
[19]
Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 49, 3594.
[20]
Wang, Y.; Zhang, P.; Liu, Y.; Xia, F.; Zhang, J. Chem. Sci. 2015, 6, 5564.
[21]
Bernal-Albert, P.; Faustino, H.; Gimeno, A.; Asensio, G.; Mascaren?as, J. L.; López, F. Org. Lett. 2014, 16, 6196.
[22]
Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M. Chem. Commun. 2015, 51, 2320.
[23]
Peng, S.; Cao, S.; Sun, J. Org. Lett. 2017, 19, 524.
[24]
Peng, S.; Ji, D.; Sun, J. Chem. Commun. 2017, 53, 12770.
[25]
Ayres, J. N.; Williams, M. T. J.; Tizzard, G. J.; Coles, S. J.; Ling, K. B.; Morrill, L. C. Org. Lett. 2018, 20, 5282.
[26]
De, N.; Song, C. E.; Ryu, D. H.; Yoo, E. J. Chem. Commun. 2018, 54, 6911.
[27]
Faustino, H.; Alonso, I.; Mascare?as, J. L.; López, F. Angew. Chem. Int. Ed. 2013, 52, 6526.
[28]
Marcote, D.; Varela, I.; Fernández-Casado, J.; Mascaren?as, J. L.; López, F. J. Am. Chem. Soc. 2018, 140, 16821.
[29]
Pirovano, V.; Brambilla, E.; Rizzato, S.; Abbiati, G.; Bozzi, M.; Rossi, E. J. Org. Chem. 2019, 84, 5150.
[30]
Wang, C.; Xu, G.; Shao, Y.; Tang, S.; Sun, J. Org. Lett. 2020, 22, 5990.
[31]
Zhu, X.; Li, R.; Yao, H.; Lin, A. Org. Lett. 2021, 23, 4630.
[32]
Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.
[33]
Liu, Y.; Cerveri, A.; De Nisi, A.; Monari, M.; Nieto Faza, O.; Lopez, C. S.; Bandini, M. Org. Chem. Front. 2018, 5, 3231.
[34]
Li, H.; Li, X.; Zhao, Z.; Ma, T.; Sun, C.; Yang, B. Chem. Commun. 2016, 52, 10167.
[35]
Okitsu, T.; Kobayashi, K.; Kan, R.; Yoshida, Y.; Matsui, Y.; Wada, A. Org. Lett. 2017, 19, 4592.
[36]
Banerjee, S.; Senthilkumar, B.; Patil, N. T.; Org. Lett. 2018, 21, 180.
[37]
Lu, N.; Zhang, Z.; Ma, N.; Wu, C.; Zhang, G.; Liu, Q.; Liu, T. Org. Lett. 2018, 20, 4318.
[38]
Wei, L.-L.; Hsung, R. P.; Xiong, H.; Mulder, J. A.; Nkansah, N. T. Org. Lett. 1999, 1, 2145.
[39]
Navarro-Vázquez, A.; Rodríguez, D.; Martínez-Esperón M. F. García A., Saá, C.; Domínguez, D. Tetrahedron Lett. 2007, 48, 2741.
[40]
Broggini, G.; Borsini, E.; Fasana, A.; Poli, G.; Liron, F. Eur. J. Org. Chem. 2012, 2012, 3617.
[41]
Zhong, X.; Tang, Q.; Zhou, P.; Zhong, Z.; Dong, S.; Liu, X.; Feng, X. Chem. Commun. 2018, 54, 10511.
[42]
Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem. Int. E. 2015, 54, 14849.
[43]
Liu, R.; Hu, J.; Hong, J.; Lu, C.; Gao, J.; Jia, Y. Chem. Sci. 2017, 8, 2811.
[44]
López, E.; González, J.; López, L. A. Adv. Synth. Catal. 2016, 358, 1428.
[45]
Nada, T.; Yoneshige, Y.; Ii, Y.; Matsumoto, T.; Fujioka, H.; Shuto, S.; Arisawa, M. ACS Catal. 2016, 6, 3168.
[46]
Wang, Y.; Zhang, P.; Di, X.; Dai, Q.; Zhang, Z.-M.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 15905.
[47]
Lin, T.-Y.; Zhu, C.-Z.; Zhang, P.; Wang, Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 10844.
[48]
Zheng, W.-F.; Sun, G.-J.; Chen, L.; Kang, Q. Adv. Synth. Catal. 2018, 360, 1790.
[49]
Zheng, W.-F.; Bora, P. P.; Sun, G.-J.; Kang, Q. Org. Lett. 2016, 18, 3694.
[50]
Zhang, P.-C.; Han, J.; Zhang, J. Angew. Chem. Int. Ed. 2019, 58, 11444.
[51]
Yan, F.; Liang, H.; Ai, B.; Liang, W.; Jiao, L.; Yao, S.; Zhao, P.; Liu, Q.; Dong, Y.; Liu, H. Org. Biomol. Chem. 2019, 17, 2651.
[52]
Li, J.; Meng, L.; Liu, Q.; Du, X.; Xu, L.; Zhang, L.; Sun, F.; Li, X.; Zhang, D.; Xiao, X.; Liu, H. Org. Chem. Front. 2020, 7, 3880.
[53]
Wang, Y.; Jiang, M.; Liu, J.-T. Adv. Synth. Catal. 2014, 356, 2907.
[54]
Yuan, X.; Man, X. J. A. T. R. H.; Li, X.-X.; Zhao, Z.-G. Tetrahedron. 2018, 74, 5674.
[55]
Luo, G.; Liu, Y.; Ding, N.; Li, X.; Zhao, Z. ACS Omeg. 2019, 4, 15312.
[56]
Chen, L.; Yu, J.; Tang, S.; Shao, Y.; Sun, J. Org. Lett. 2019, 21, 9050.
[57]
Koleoso, O. K.; Turner, M.; Plasser, F.; Plasser, F.; Kimber, M. C. Beilstein J. Org. Chem. 2020, 16, 1983.
文章导航

/