综述与进展

酰胺键的绿色高效构建方法与技术进展

  • 黄净 ,
  • 杨毅华 ,
  • 张占辉 ,
  • 刘守信
展开
  • a 河北师范大学化学与材料科学学院 石家庄 050024
    b 河北科技大学 河北省新药创制协同创新中心 河北省药用分子化学重点实验室 石家庄 050018

收稿日期: 2023-09-11

  修回日期: 2023-10-23

  网络出版日期: 2023-10-30

基金资助

“973”计划前期研究专项课题(2011CB512007); “973”计划前期研究专项课题(2012CB723501); 国家自然科学基金(30472074); 国家自然科学基金(30873139); 国家自然科学基金(21978067)

Recent Progress on Green Methods and Technologies for Efficient Formation of Amide Bonds

  • Jing Huang ,
  • Yihua Yang ,
  • Zhanhui Zhang ,
  • Shouxin Liu
Expand
  • a College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024
    b Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Center of New Drug Creation, Hebei University of Science & Technology, Shijiazhuang 050018
* Corresponding authors. E-mail: ;

Received date: 2023-09-11

  Revised date: 2023-10-23

  Online published: 2023-10-30

Supported by

National Basic Research Program of China(2011CB512007); National Basic Research Program of China(2012CB723501); National Natural Science Foundation of China(30472074); National Natural Science Foundation of China(30873139); National Natural Science Foundation of China(21978067)

摘要

在多肽合成与药物化学研究中, 酰胺键形成反应是至关重要的. 传统的酰胺键构建方法要使用过量试剂和大量溶剂, 对环境和人类健康构成严重威胁, 因而开发环境友好的新颖酰化试剂、高效绿色可持续的酰胺键合成方法, 以实现酰胺的选择性合成仍然是当前的研究热点. 在绿色化学的背景下, 重点介绍了近几年绿色高效构建酰胺键的方法, 包括元素有机物催化、绿色溶剂和绿色试剂的发展以及应用物理强化技术等, 特别强调了这些方法在多肽合成中的应用.

本文引用格式

黄净 , 杨毅华 , 张占辉 , 刘守信 . 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024 , 44(2) : 409 -420 . DOI: 10.6023/cjoc202309011

Abstract

Amide bond constructions are crucial in peptide synthesis and pharmaceutical chemistry research. The traditional methods of peptide synthesis require the use of excessive amounts reagents and solvents, posing a threat to the environment and human health. It is still the current research focus to develop environmentally friendly novel acylation reagents and efficient, green, and sustainable amide bond synthesis methods. From the green chemistry’s principles, this paper is focused on the efficient formation of amide bonds in peptide, including the catalysis of elemental organic chemicals, some green solvents and reagents, and some physical strengthening methods, etc. The application of these methods and technologies was also discussed in peptide chemistry.

参考文献

[1]
Marchetti, P. M.; Richardson, S. M.; Kariem, N. M.; Campopiano, D. J. Med. Chem. Commun. 2019, 10, 1192.
[2]
Mahesh, S; Tang, K. C.; Raj, M. Molecule. 2018, 23, 2615.
[3]
(a) Santos, A. S.; Silva, A. M. S.; Marques, M. M. B. Eur. J. Org. Chem. 2020, 2501.
[3]
(b) Dorr, B. M.; Fuerst, D. E. Curr. Opin. Chem. Biol. 2018, 43, 127.
[4]
Papadopoulos, L.; Kluge, M.; Bikiaris, D. N.; Robert, T. Polymer. 2020, 12, 980.
[5]
Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F.; Sheppard, T. D. Nat. Catal. 2019, 2, 10.
[6]
Goo?en, L. J.; Ohlmann, D. M.; Lange, P. P. Synthesi. 2009, 160.
[7]
(a) Bannister, R. B.; Brookes, M. H.; Evans, G. R.; Katz, R. B.; Tyrrell, N. D. Org. Process. Res. Dev. 2000, 4, 467.
[7]
(b) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196.
[7]
(c) Arnold, K.; Batsanov, A. S.; Davies, B.; Whiting, A. Green Chem. 2008, 10, 124.
[7]
(d) Arnold, K.; Davies, B.; Hérault, D.; Whiting, A. Angew. Chem. Int. Ed. 2008, 47, 2673.
[7]
(e) Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. Chem. Commun. 2010, 46, 1813.
[7]
(f) Charville, H.; Jackson, D.; Hodges, G.; Whiting, A.; Wilson, M. R. Eur. J. Org. Chem. 2011, 5981.
[7]
(g) Liu, S.; Yang, Y.; Liu, X.; Fardousi, F. K.; Batsanov, A. S.; Whiting, A. Eur. J. Org. Chem. 2013, 5692.
[7]
(h) Fatemi, S.; Gernignon, N.; Hall, D. G. Green Chem. 2015, 17, 4016.
[7]
(i) Sabatini, M. T.; Boulton, L. T.; Sheppard, T. D. Sci. Adv. 2017, 3, e1701028.
[8]
(a) Allen, C. L.; Chhatwal, A. R.; Williams, J. M. J. Chem. Commun. 2012, 48, 666.
[8]
(b) Lundberg, H.; Tinnis, F.; Adolfsson, H. Chem. Eur. J. 2012, 18, 3822.
[8]
(c) Lundberg, H.; Tinnis, F.; Adolfsson, H. Synlet. 2012, 23, 2201.
[8]
(d) Lundberg, H.; Adolfsson, H. ACS Catal. 2015, 5, 3271.
[8]
(e) Lundberg, H.; Tinnis, F.; Adolfsson, H. Appl. Organomet. Chem. 2019, 33, 1.
[8]
(f) Gernigon, N.; Al-Zoubi, R. M.; Hall, D. G. J. Org. Chem. 2012, 77, 8386.
[9]
Gabriel, C. M.; Keener, M.; Gallou, F.; Lipshutz, B. H. Org. Lett. 2015, 17, 3968.
[10]
Arnold F. H. Angew. Chem. Int. Ed. 2019, 58, 2.
[11]
Lubberink, M.; Finnigan, W.; Flitsch, S. L. Green Chem. 2023, 25, 2958.
[12]
Bruggink, A.; Roos, E. C.; Vroom, E. D. Org. Process Res. Dev. 1998, 2, 128.
[13]
(a) Kobayashi, M.; Shimizu, S. Nat. Biotechnol. 1998, 16, 733.
[13]
(b) Bering, L.; Craven, E. J.; Thomas, S. A. S.; Shepherd, S. A.; Micklefield, J. Nat. Commun. 2022, 13, 1.
[14]
(a) Contente, M. L.; Farris, S.; Tamborini, L.; Molinari, F.; Paradisi, F. Green Chem. 2019, 21, 3263.
[14]
(b) Contente, M. L.; Padrosa, D. R.; Molinari, F.; Paradisi, F. Nat. Catal. 2020, 3, 1020.
[15]
(a) Winkler, M.; Ling, J. G. ChemCatChe. 2022, 14, e202200441.
[15]
(b) Schnepel, C.; Pérez, L. R.; Yu, Y. Q.; Angelastro, A.; Heath, R. S.; Lubberink, M; Falcioni, F.; Mulholland, K.; Hayes, M. A.; Turner, N. J.; Flitsch, S. L. Nat. Catal. 2023, 6, 89.
[15]
(c) Petchey, M. R.; Rowlinson, B.; Lloyd, R. C.; Fairlamband, I. J. S.; Grogan, G. ACS Catal. 2020, 10, 4659.
[15]
(d) Winn, M.; Rowlinson, M.; Wang, F.; Bering, L.; Francis, D.; Levy, C. Micklefield J. Nature 2021, 593, 391.
[15]
(e) Winn, M.; Richardson, S. M.; Campopiano, D. J.; Micklefield, J. Curr. Opin. Chem. Biol. 2020, 55, 77.
[16]
Qvit N., Rubin S. J. S. Curr. Top. Med. Chem. 2020, 20, 2903.
[17]
Jensen, S.M.; Potts, G.K.; Ready, D.B.; Patterson, M. J. Front. Immunol. 2018, 9, 2697.
[18]
Jeong, W.J.; Bu, J.; Kubiatowicz, L.J.; Chen, S.S.; Kim, Y.; Hong, S. Nano Convergenc. 2018, 5, 38.
[19]
Lee, J.; Lee, H.; Kim, J.; Kim, H. Macromol. Res. 2020, 28, 185.
[20]
Tsoras, A.N.; Champion, J. A. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 337.
[21]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Watkins, S.P.; Carter, L. J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey S. Albaiu D. ACS Cent. Sci.. 2020, 6, 315.
[22]
Xia, S.; Liu, M.; Wang, C.; Xu, W; Lan, Q. S.; Feng, S. L.; QI, F. F.; Bao, L. L.; Du, L. Y.; Liu, S.W.; Qin, C.; Sun, F.; Shi, Z. L.; Zhu, Y.; Jiang, S. B.; Lu, L. Cell Res. 2020, 30, 343.
[23]
de la Torre, B. G.; Albericio, F. Molecule. 2023, 28, 1038.
[24]
Martin, V.; Egelund, P. H. G.; Johansson, H.; Quement, S. T. L.; Wojcik, F.; Pedersen, D. S. RSC Adv. 2020, 10, 42457.
[25]
Anselmi, M.; Stavole, P.; Boanini, E.; Bigi, A.; Juaristi, E.; Gentilucci, L. Future Med. Chem. 2020, 12, 479.
[26]
Pawlas, J.; Nuijens, T.; Jonas, P.; Svensson T.; Schmidt M.; Toplak, A.; Nilsson, M.; Rasmussen, J. H. Green Chem.. 2019, 21, 6451.
[27]
Rasmussen J. H. Bioorg. Med. Chem. 2018, 26, 2914.
[28]
Musaimi, A.; de la Torre, B. G.; Albericio, F. O. Green Chem. 2020, 22, 996.
[29]
(a) Hojo, K.; Maeda, M.; Tanakamaru, N.; Mochida, K.; Kawasaki, K. Protein Pept. Lett. 2006, 13, 189.
[29]
(b) Hojo, K.; Maeda, M.; Kawasaki, K. Tetrahedro. 2004, 60, 1875.
[30]
(a) El-Faham, A.; Albericio, F. Pept. Sci. 2020, 112, e24164.
[30]
(b) Knauer, S.; Koch, N.; Uth, C.; Meusinger, R.; Avrutina, O.; Kolmar, H. Angew. Chem.. Int. Ed. 2020, 59, 12984.
[31]
(a) Fischer M. J. E. Methods Mol. Biol. 2010, 627, 55.
[31]
(b) Nair, M.; Johal, R.K.; Hamaia, S.W.; Best, S. M.; Cameron, R. E. Biomaterial. 2020, 254, 120109.
[31]
(c) Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Agha- mollaei, H. Int. J. Biol. Macromol. 2019, 126, 620.
[32]
Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C. R.; Abou-Shehada, S.; Dunn, P. J. Green Chem. 2016, 18, 288.
[33]
Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chem. 2008, 10, 31.
[34]
(a) Prat, D.; Pardigon, O.; Flemming, H. W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Org. Process Res. Dev. 2013, 17, 1517.
[34]
(b) Diorazio, L. J.; Hose, D. R. J.; Adlington, N. K. Org. Proc. Res. Dev. 2016, 20, 760.
[35]
MacMillan, D. S.; Murray J., Sneddon, H. F.; Jamieson, C.; Watson, A. J. B. Green Chem. 2013, 15, 596.
[36]
(a) Jad, Y. E.; Acosta, G. A.; Khattab, S. N.; de la Torre, B. G.; Govender, T.; Kruger, H. G.; El-Faham, A.; Albericio, F. Org. Biomol. Chem. 2015, 13, 2393.
[36]
(b) Jad, Y. E.; Acosta, G. A.; Khattab, S. N.; de la Torre, B. G.; Govender, T.; Kruger, H. G.; El-Faham, A.; Albericio, F. Amino Acid. 2016, 48, 419.
[36]
(c) Kumar, A.; Jad, Y. E.; El-Faham, A.; de la Torre, B. G.; Albericio, F. Tetrahedron Lett. 2017, 58, 2986.
[36]
(d) Kumar, A.; Jad, Y. E.; Collins, J. M.; Albericio, F.; de la Torre, B.G. ACS Sustainable Chem. Eng. 2018, 6, 8034.
[37]
(a) Lawrenson, S. B.; Arav, R.; North, M. Green Chem. 2017, 19, 1685.
[37]
(b) Lawrenson, S.; North, M.; Peigneguy, F.; Routledge, A. Green Chem. 2017, 19, 952.
[38]
Lopez, J.; Pletscher, S.; Aemissegger, A.; Bucher, C.; Gallou, F. Org. Process Res. Dev. 2018, 22, 494.
[39]
Wilson, K. L.; Murray, J.; Jamieson, C.; Watson, A. J. B. Org. Biomol. Chem. 2018, 16, 2851.
[40]
Sherwood, J.; De bruyn, M.; Constantinou, A.; Moity, L.; McElroy, C. R.; Farmer, T. J.; Duncan, T.; Raverty, W.; Hunt, A. J.; Clark, A. H. Chem. Commun. 2014, 50, 9650.
[41]
(a) Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, L. E.; Sneddon, H. F. Green Chem. 2016, 18, 3879.
[41]
(b) Henderson, R. K.; Hill, A. P.; Redman, A. M.; Sneddon, H. F. Green Chem. 2015, 17, 945.
[42]
Wade, J. D.; Mathieu, M. N.; Macris, M.; Tregear, G. W. Lett. Pept. Sci. 2000, 7, 107.
[43]
(a) Pawlas, J.; Antonic, B.; Lundqvist, M.; Svensson, T.; Finnman, J.; Rasmussen, J. H. Green Chem. 2019, 21, 2594.
[43]
(b) Pawlas, J.; Rasmussen, J.H. Green Chem. 2019, 21, 5990.
[44]
(a) Pribylka, A.; Krchnak, V.; Schutznerova, E. Green Chem. 2019, 21, 775.
[44]
(b) Kumar, A.; Sharma, A.; de la Torre, B.G.; Albericio, F. Molecule. 2019, 24, 4004.
[45]
Martelli, G.; Cantelmi, P.; Palladino, C.; Mattellone, A.; Corbisiero, D.; Fantoni, T.; Tolomelli, A.; Macis, M.; Ricci, A.; Cabri, W.; Ferrazzano, L. Green Chem. 2021, 23, 8096.
[46]
Albericio, F.; El-Faham, A. Org. Process Res. Dev. 2018, 22, 760.
[47]
Wehrstedt, K. D.; Wandrey, P. A.; Heitkamp, D. J. Hazard. Mater. 2005, 126, 1.
[48]
Subiro?s-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albe- ricio, F. Chem. Eur. J. 2009, 15, 9394.
[49]
(a) El-Faham, A.; Subiros Funosas, R.; Prohens, R.; Albericio, F. Chem. Eur. J. 2009, 15, 9404.
[49]
(b) Kumar, A.; Jad, Y. E.; de la Torre, B. G.; El-Faham, A.; Albericio, F. J. Pept. Sci. 2017, 23, 763.
[49]
(c) Porte, V.; Thioloy, M.; Pigoux, T.; Metro, T.-X.; Martinez, J.; Lamaty, F. Eur. J. Org. Chem. 2016, 21, 3505.
[50]
(a) Zhang, S.; De Leon Rodriguez, L. M.; Lacey, E.; Piggott, A. M.; Leung, I. K. H.; Brimble, M. A. Eur. J. Org. Chem. 2017, 149.
[50]
(b) Davison, E. K.; Cameron, A. J.; Harris, P. W. R.; Brimble, M. A. Med. Chem. Comm.. 2019, 10, 693.
[51]
Othman, A. M.; Richard, W.; Peter, T.; De la torre, B.; Fernando, A. ChemistrySelec. 2021, 6, 2649.
[52]
(a) Dawson, P.; Muir, T.; Clark-Lewis, I.; Kent, S. Scienc. 1994, 266, 776.
[52]
(b) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K; Liu, L. Angew. Chem. Int. Ed. 2011, 50, 7645.
[52]
(c) Huang, Y. C.; Fang, G. M.; Liu, L. Natl. Sci. Rev. 2016, 3, 107.
[52]
(d) Ai, H.; Chu, G. C.; Gong, Q. Y.; Tong, Z. B.; Deng Z. H, ; Liu, X.; Yang, F.; Xu, Z. Y.; Li, J. B.; Tian, C. L.; Liu, L. J. Am. Chem. Soc. 2022, 144, 18329.
[53]
Agouridas, V.; Mahdi, O. E.; Diemer, l. V.; Cargot, M. J.; Monbaliu, C. M.; Melnyk, O.; Chem. Rev. 2019, 119, 7328.
[54]
Baumruck, A. C.; Yang, J.; Thomas, Gerke-Fabian; Beyer, L. I.; Tietze, D.; Tietze, A. A. J. Org. Chem. 2021, 86, 1659.
[55]
(a) Zhu, S.; Guo, Z. Org. Lett. 2017, 19, 3063.
[55]
(b) Liu, H.; Li, X. Acc. Chem. Res. 2018, 51, 1643.
[55]
(c) Jin, K.; Sam, I. H.; Po, K. H. L.; Lin, D. A.; Ghazvini Zadeh, E. H.; Chen, S.; Yuan, Y.; Li, X. Nat. Commun. 2016, 7, 12394.
[55]
(d) Jin, K.; Po, K. H. L.; Wang, S.; Reuven, J. A.; Wai, C. N.; Lau, H. T.; Chan, T. H.; Chen, S.; Li, X. Bioorg. Med. Chem. 2017, 25, 4990.
[55]
(e) Kumarswamyreddy, K.; Reddy, D. N.; Robkis, D.M.; Kamiya, N.; Tsukamoto, R.; Kanaoka, M. M.; Higashiyama, T.; Oishi, S.; Bode, J. W. RSC Chem. Biol. 2022, 3, 721.
[56]
(a) Declerck, V.; Nun, P.; Martinez, J.; Lamaty, F. Angew. Chem.. Int. Ed. 2009, 48, 9318.
[56]
(b) Bonnamour, J.; Metro, T. X.; Martinez, J.; Lamaty, F. Green Chem. 2013, 15, 1116.
[56]
(c) Maurin, O.; Verdie, P.; Subra, G.; Lamaty, F.; Martinez, J.; Metro, T. X. Beilstein J. Org. Chem. 2017, 13, 2087.
[57]
Yeboue, Y.; Gallard, B.; Le Moigne, N.; Jean, M.; Lamaty, F.; Martinez, J.; Metro, T. X. ACS Sustainable Chem. Eng. 2018, 6, 16001.
[58]
Landeros, J. M.; Juaristi, E. Eur. J. Org. Chem.. 2017, 687.
[59]
Hartrampf, N.; Saebi, A.; Poskus, M.; Gates, Z.; Callahan, P. A. J.; Cowfer, A. E.; Hanna, S.; Antilla, S.; Schissel, C. K.; Quartararo, A. J.; Ye, X.; Mijalis;, A. J.; Simon, M. D.; Loas, A.; Liu, S.; Jessen, C.; Nielsen, T. E.; Pentelute, B. L. Scienc. 2020, 368, 980.
[60]
(a) Fuse, S.; Otake, Y.; Nakamura, H. Chem. Asian J. 2018, 13, 3818.
[60]
(b) Fuse, S.; Mifune, Y.; Takahashi, T. Angew. Chem. Int. Ed. 2014, 53, 851.
[60]
(c) Fuse, S.; Mifune, Y.; Nakamura, H.; Tanaka, H. Nat. Commun. 2016, 7, 13491.
[60]
(d) Fuse, S.; Masuda, K.; Otake, Y.; Nakamura, H. Chem. Eur. J. 2019, 25, 15091.
[60]
(e) Otake, Y.; Nakamura, H.; Fuse, S. Angew. Chem. Int. Ed. 2018, 57, 11389.
[61]
Jolley, K. E.; Nye, W.; Nino, C. G.; Kapur, N.; Rabion, A.; Rossen, K.; Blacker, A. J. Org. Process Res. Dev. 2017, 21, 1557.
[62]
Mishra, A. K.; Parvari, G.; Santra S. K.; Bazylevich, A.; Dorfman, O.; Rahamim J.; Eichen, Y.; Szpilman, A. M. Angew. Chem. Int. Ed. 2021, 60, 2.
文章导航

/