利用串联的Staudinger/aza-Wittig/芳构化反应合成1,2,4-三取代咪唑衍生物
收稿日期: 2023-06-26
修回日期: 2023-09-25
网络出版日期: 2023-11-08
基金资助
大同市应用基础研究项目基金(02030710)
Synthesis of 1,2,4-Trisubstituted Imidazoles via Sequential Staudinger/aza-Wittig/Aromatization Reaction
Received date: 2023-06-26
Revised date: 2023-09-25
Online published: 2023-11-08
Supported by
Datong Applied Basic Research Project Fund(02030710)
报道了一种合成1,2,4-三取代咪唑衍生物的方法, 即通过含有烯基叠氮基的苯甲酰胺衍生物为关键中间体, 用三苯基膦处理, 发生串联的Staudinger/aza-Wittig/芳构化反应, 合成得到1,2,4-三取代咪唑衍生物. 该反应具有原料廉价易得, 反应条件温和, 无需使用金属催化剂, 操作简便的特点, 这是一种理想、高效的1,2,4-三取代咪唑杂环化合物的合成策略.
关键词: Staudinger反应; aza-Wittig反应; 芳构化反应; 1,2,4-三取代咪唑
解海 , 张雅丽 , 秦秀婷 , 谷永新 . 利用串联的Staudinger/aza-Wittig/芳构化反应合成1,2,4-三取代咪唑衍生物[J]. 有机化学, 2024 , 44(2) : 525 -532 . DOI: 10.6023/cjoc202306022
An efficient and convenient route for the synthesis of 1,2,4-trisubstituted imidazole derivatives was described. Benzamide derivatives containing alkenylazide as the basic raw materials were treated with triphenyl phosphorus, and subsequently 1,2,4-trisubstituted imidazole derivatives were synthesized by a sequential Staudinger/aza-Wittig/aromatization reaction. The reaction is characterized by cheap and easy to obtain starting materials, mild reaction conditions, metal-free catalysts, and simple operation. It is an ideal and efficient synthesis strategy of 1,2,4-trisubstituted imidazole heterocyclic compounds.
| [1] | Jin Z. Nat. Prod. Rep. 2011, 28, 1143. |
| [2] | Hoffmann, H.; Lindel, T. Synthesis-stuttgar. 2003, 12, 1753. |
| [3] | Gaba, M.; Mohan, C. Med. Chem. Res. 2003, 25, 173. |
| [4] | Franchetti, P.; Marchetti, L. S.; Cappaellaci, J. A.; Yalowitz, H. N.; Jayaram, B. M.; Glodstein, M.; Grafantini, A. Bioorg. Med. Chem. Lett. 2001, 11, 67. |
| [5] | Baraldi, P. G.; Beria, I.; Cozzi, P.; Bianchi, N.; Gambari, R.; Romagnoli, R. Bioorg. Med. Chem. 2003, 11, 965. |
| [6] | Vlahakis, J. Z.; Kinobe, R. T.; Nakatsu, K.; Szarek, W. A.; Crandall, I. E. Bioorg. Med. Chem. Lett. 2006, 16, 296. |
| [7] | Lagu, B.; Kluge, A. F.; Tozzo, E.; Fredenburg, R.; Bell, E. L.; Goddeeris, M. M.; Dwyer, P.; Basinski, A.; Senaiar, R. S.; Jaleel, M.; Tiwari, N. K.; Panigrahi, S. K.; Krishnamurthy, N. R.; Takahashi, T.; Patane, M. A. ACS Med. Chem. Lett. 2018, 9, 935. |
| [8] | Zhu, H. Y.; Cooper, A. B.; Desai, J.; Njoroge, G.; Kirschmeier, P.; Bishop, W. R.; Strickland, C.; Hruza, A.; Doll, R. J.; Girijavallabhan, V. M. Bioorg. Med. Chem. Lett. 2010, 20, 1134. |
| [9] | Mishra, R.; Ganguly, S. Med. Chem. Res. 2012, 21, 3929. |
| [10] | Rani, N.; Sharma, A.; Gupta, G. K.; Singh, R. Mini-Rev. Med. Chem. 2013, 13, 1626. |
| [11] | Chen, Y.; Wei, Y. F.; Li, J. X.; Luo, W. Q.; Jin, C. M. Chin. J. Inorg. Chem. 2021, 37, 235 (in Chinese). |
| [11] | (陈雨, 卫杨帆, 李嘉欣, 罗文琦, 金传明, 无机化学. 2021, 37, 235.) |
| [12] | Luo, H. B.; Ren, Q.; Wang, P.; Zhang, J.; Wang, L. F.; Ren, X. M. ACS Appl. Mater. Interface. 2019, 11, 9164. |
| [13] | Ye, Y. X.; Guo, W. G.; Wan, L. H.; Li, Z. Y.; Song, Z. J.; Chen, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. J. Am. Chem. Soc. 2017, 139, 15604. |
| [14] | Tseng, C. C.; Chen, K. L.; Lee, K. W.; Takayam, H.; Lin, C. Y; Wong, F. F. Prog. Org. Coat. 2019, 127, 385. |
| [15] | Wang, X. J.; Xu, T.; Duan, H. D. Sens. Actuators. B 2015, 214, 138. |
| [16] | Cheng, D. D.; Liu, X. L.; Yang, H. Z.; Zhang, T.; Han, A. X.; Zang, L. Sensor. 2017, 17, 35. |
| [17] | Xu, Z. X.; Wang, S. M.; Zhao, L.; Zhang, S. L.; Li, J. B. Chin. J. Org. Chem. 2003, 23, 950 (in Chinese). |
| [17] | (许祖勋, 王世敏, 赵雷, 张胜利, 黎俊波, 有机化学. 2003, 23, 950.) |
| [18] | Zhao, Y.; Chen, P. P.; Li, G. N.; Niu, Z. G.; Wang, E. J. Chin. J. Org. Chem. 2023, 43, 2156 (in Chinese). |
| [18] | (赵洋, 陈盼盼, 李高楠, 钮智刚, 王恩举, 有机化学. 2023, 43, 2156.) |
| [19] | He, Y.; Chai, Y. Q.; Yuan, R.; Wang, H. J.; Bai, L. J.; Cao, Y. L.; Yuan, Y. L. Biosens. Bioelectron. 2013, 50, 294. |
| [20] | Debus H. Justus Liebigs Ann. Chem. 1858, 107, 199. |
| [21] | Radzisewski B. Ber. Dtsch. Chem. Ges. 1882, 15, 2706. |
| [22] | Bredereck, H.; Theilig, G. Chem. Ber. 1953, 86, 88. |
| [23] | Gupta, G. K.; Rani, N.; Kumar, V. Mini-Rev. Org. Chem. 2012, 9, 270. |
| [24] | Patel, S. R.; Patil, R. V.; Chavan, J. U.; Beldar, A. G. Turk. J. Chem. 2022, 46, 624. |
| [25] | Rani, N.; Kumar, P.; Singh, R.; de Sousa, D. P.; Sharma, P. Curr. Drug Target. 2020, 21, 1130. |
| [26] | Kamijo, S.; Yamamoto, Y. Chem.-Asian J. 2007, 2, 568. |
| [27] | Heravi, M. M.; Daraie, M.; Zadsirjan, V. Mol. Diversit. 2015, 19, 577. |
| [28] | Tolomeu, H. V.; Fraga, C. A. M. Molecule. 2023, 28, 838. |
| [29] | Punia, S.; Verma, V.; Kumar, D.; Singh, G.; Sahoo, S. C. Synth. Commun. 2020, 50, 700. |
| [30] | Salfeena, C.T. F.; Jalaja, R.; Davis, R.; Suresh, E.; Somappa, S. B. ACS Omeg. 2018, 3, 807. |
| [31] | Yu, H. H.; Xiao, L.; Yang, X. C.; Shao, L. M. Chem. Commun. 2017, 53, 9745. |
| [32] | Huang, X. S.; Cong, X. F.; Mi, P. B.; Bi, X. H. Chem. Commun. 2017, 53, 3858. |
| [33] | Wu, P.; Zhang, L. T.; Zhang, X. G.; Guo, X.; Chen, B. H. Chin. J. Chem. 2016, 34, 363. |
| [34] | Cao, J. H.; Zhou, X. Q.; Ma, H. J.; Shi, C.; Huang, G. S. RSC Adv. 2016, 6, s7232. |
| [35] | Tang, D.; Guo, X.; Wang, Y.; Wang, J.; Li, J. H.; Huang, Q. W.; Chen, B. H. Tetrahedron Lett. 2015, 56, 5982. |
| [36] | Li, Y. X.; Fu, Y. J.; Ren, C. J.; Tang, D.; Wu, P.; Meng, X.; Chen, B. H. Org. Chem. Front. 2015, 2, 1632. |
| [37] | Liu, X.; Wang, D.; Chen, Y. X.; Tang, D.; Chen, B. H. Adv. Synth. Catal. 2013, 355, 2798. |
| [38] | Xiao, L. W.; Peng, X. X.; Zhou, Q. X.; Kou, W.; Shi, Y. R. Chin. J. Org. Chem. 2015, 35, 1204 (in Chinese). |
| [38] | (肖立伟, 彭晓霞, 周秋香, 寇伟, 时亚茹, 有机化学. 2015, 35, 1204.) |
| [39] | Zhao, M. N.; Yang, Z. M.; Yang, D. S. Chin. J. Org. Chem. 2022, 42, 111 (in Chinese). |
| [39] | (赵咪娜, 杨梓墨, 杨得锁, 有机化学. 2022, 42, 111.) |
| [40] | Staudinger, H.; Meyer, J. Helv. Chim. Act. 1919, 2, 635. |
| [41] | Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; Santos, J. M. Tetrahedro. 2007, 63, 523. |
| [42] | Pedrood, K.; Montazer, M. N.; Larijani, B.; Mahdavi, M. Synthesis-stuttgar. 2021, 53, 2342. |
| [43] | Lao, Z. Q.; Toy, P. H. Beilstein J. Org. Chem. 2016, 12, 2577. |
| [44] | Lebedev, R.; Dar’in, D.; Kantin, G.; Bakulina, O.; Krasavin, M. Molecule. 2022, 27, 8130. |
| [45] | Xie, H.; Hu, Q. Q.; Zhang, Y. L.; Qin, X. T.; Li, L. Curr. Org. Synth. 2023, 20, 589. |
| [46] | Xie, H.; Hu, Q. Q.; Qin, X. T.; Liang, J. M.; Li, L.; Zhang, Y. L.; Lu, Z. Heterocycle. 2022, 104, 585. |
| [47] | Xie, H.; Rao, Y.; Ding, M. W. Dyes Pigm. 2017, 139, 440. |
| [48] | Xie, H.; Yuan, D.; Ding, M. W. J. Org. Chem. 2012, 77, 2954. |
| [49] | Xie, H.; Liu, J. C.; Ding, M. W. Synthesi. 2016, 48, 4541. |
| [50] | Xie, H.; Ding, M. W. Tetrahedro. 2012, 68, 7984. |
| [51] | McGonagle, F. I.; MacMillan, D. S.; Murray, J.; Sneddon, H. F.; Jamieson, C.; Watson, A. J. B. Green Chem. 2013, 15, 1159. |
| [52] | Ding M. W. Sci. Sin. Chim. 2010, 40, 869 (in Chinese). |
| [52] | (丁明武, 中国科学: 化学. 2010, 40, 869.) |
| [53] | Nie, Y. B.; Duan, Z.; Ding, M. W. Tetrahedro. 2012, 68, 965. |
/
| 〈 |
|
〉 |