综述与进展

可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展

  • 梅青刚 ,
  • 李清寒
展开
  • a 绵阳师范学院生命科学与技术学院 四川绵阳 621000
    b 西南民族大学化学与环境学院 成都 610041

收稿日期: 2023-08-10

  修回日期: 2023-10-10

  网络出版日期: 2023-11-08

基金资助

四川省教育科研2021年度重点课题(SCJG21A020); 四川省科技厅支撑计划(2015NZ0033)

Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds

  • Qinggang Mei ,
  • Qinghan Li
Expand
  • a School of Life Science and Biotechnology, Mianyang Teachers’ College, Mianyang, Sichuan 621000
    b College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041
* Corresponding author.

Received date: 2023-08-10

  Revised date: 2023-10-10

  Online published: 2023-11-08

Supported by

Key Project of Sichuan Provincial Education Science Research in 2021(SCJG21A020); Sichuan Provincial Department of Science and Technology Support Program(2015NZ0033)

摘要

吲哚硫醚结构广泛存在于许多药物分子和天然产物分子中, 其衍生物具有抗菌、抗病毒及抗肿瘤等广泛的生物活性, 同时也是有机合成的重要中间体及药物合成的结构单元, 因此吲哚硫醚化合物在医药领域具有极大的应用价值. 其合成方法的研究也成为当前有机合成研究领域的热点之一. 特别是近年来, 可见光促进的吲哚C(3)(杂)芳硫基化反应得到了快速的发展, 已成为制备吲哚硫醚类化合物的温和、高效合成方法之一. 综述了近年来可见光促进的吲哚硫醚类化合物的合成方法研究进展, 并对其部分反应机理做了相应的阐述.

本文引用格式

梅青刚 , 李清寒 . 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024 , 44(2) : 398 -408 . DOI: 10.6023/cjoc202308008

Abstract

The structure of 3-sulfenyl indoles widely exists in many drug molecules and natural product molecules. Its derivatives have extensive biological activities such as antibacterial, antiviral and anti-tumor, and are also important intermediates of organic synthesis and structural units of drug synthesis. Therefore, 3-sulfenyl indole compounds have great application value in the field of medicine. The research of its synthesis method has also become one of the current research hotspots. In this paper, the research progress in the synthesis of 3-sulfenyl indoles compounds in recent years is reviewed, and some reaction mechanisms are also discussed.

参考文献

[1]
(a) Jia, Y. S.; Wen, X. Y.; Gong, Y. F.; Wang, X. F. Eur. J. Med. Chem. 2020, 200, 112359.
[1]
(b) Kumaria, A.; Singh, R. K. Bioorg. Chem. 2019, 89, 103021.
[1]
(c) Han, Y.; Dong, W.; Guo, Q.; Li, X.; Huang, L. Eur. J. Med. Chem. 2020, 203, 112506.
[2]
Ragno, R.; Coluccia, A.; Regina, L. G.; Martino, D. G.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 3172.
[3]
Unangst, C. P.; Connor, T. D.; Stabler, S. R.; Weikert, J. R.; Carethers, E. M.; Kennedy, A. J.; Thueson, O. D.; Chestnut, C. J.; Adolphson, L. R.; Conroy, M. C. J. Med. Chem. 1989, 32, 1360.
[4]
Coluccia, A.; Passacantilli, S.; Famiglini, V.; Sabatino, M.; Patsilinakos, A.; Ragno, R.; Mazzoccoli, C.; Sisinni, L.; Okuno, A.; Takikawa, O.; Silvestri, R.; Regina, L. G. J. Med. Chem. 2016, 59, 9760.
[5]
Campbell, J. A.; Bordunov, V.; Broka, C. A.; Browner, M. F.; Kress, J. M.; Mirzadegan, T.; Ramesha, C.; Sanpablo, B. F.; Stabler, R.; Takahara, P.; Villasenor, A.; Walker, K. A. M.; Wang, J. H.; Welch, M.; Weller, P. Bioorg. Med. Chem. Lett. 2004, 14, 4741.
[6]
La Regina, G.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Díaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.
[7]
Truong, T. S.; Retailleau, P.; Nguyen, T. B. Asian J. Org. Chem. 2022, 11, e202100751.
[8]
Vaidya, A. B.; Paul, T. T.; Talwalkar, S. S.; Mankodi, N. A.; Sheth, U. K. J. Postgrad. Med. 1983, 29, 133.
[9]
(a) Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. Bioorg. Med. Chem. Lett. 2001, 11, 2341.
[9]
(b) Lett, G. D.; Martino, M. C. E.; Regina, G. L.; Coluccia, A.; Barbera, M. C.; Barrow, D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 947.
[10]
Dutta, K.; Majumdar, A. G.; Kushwah, N.; Wadawale, A. P.; Patro, B. S.; Ghosh, S. J. Heterocyclic Chem. 2022, 59, 2165.
[11]
Tong, Y. X.; Wang, Z. W.; Liu, B.; Xu, Y. W.; Gao, S.; Tang, X. B.; Zhang, X. H. Chin. J. Org. Chem. 2023, 43, 1310 (in Chinese).
[11]
(童宇星, 王子维, 刘奔, 徐耀威, 高颂, 唐向兵, 张兴华, 有机化学. 2023, 43, 1310.)
[12]
(a) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
[12]
(b) He, S. Q.; Chen, X. L.; Zeng, F. L.; Lu, P. P.; Peng, Y. Y.; Qu, L. B.; Yu, B. Chin. Chem. Lett. 2020, 31, 1863.
[12]
(c) Yu, X. Y.; Chen, J. R.; Xiao, W. J. Chem. Rev. 2021, 121, 506.
[12]
(d) Sun, G.; Zuo, M.; Qian, W.; Jiao, J.; Hu, X.; Wang, L. Green Synth. Catal. 2021, 2, 32.
[12]
(e) Liu, K. J.; Wang, Z.; Lu, L. H.; Chen, J. Y.; Zeng, F.; Lin, Y. W.; Cao, Z.; Yu, X. Y.; He, W. M. Green Chem. 2021, 23, 496.
[12]
(f) Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Chem. Rev. 2022, 122, 1543.
[12]
(g) Coppola, G. A.; Pillitteri, S.; Van der Eycken, E. V.; You, S. L.; Sharma, U. K. Chem. Soc. Rev. 2022, 51, 2313.
[12]
(h) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
[12]
(i) Wang, P. Z.; Xiao, W. J.; Chen, J. R. Nat. Rev. Chem. 2023, 7, 35.
[12]
(j) Li, X.; Jiang, M.; Zuo, J. Z.; Song, X. Y.; Lv, J.; Yang, D. S. Sci. China: Chem. 2023, 66, 791.
[12]
(k) Xu, H.; Zhang, J.; Zuo, J. Z.; Wang, F. X.; Lu, J.; Hun, X.; Yang, D. S. Chin. J. Org. Chem. 2022, 42, 4037 (in Chinese).
[12]
(徐浩, 张杰, 左峻泽, 王丰晓, 吕健, 混旭, 杨道山, 有机化学. 2022, 42, 4037.)
[12]
(l) Yang, D. S.; Yan, Q. L.; Zhu, E. J.; Lv, J.; He, W. M. Chin. Chem. Lett. 2022, 33, 1798.
[12]
(m) Gui, C. M.; Zhou, T. Y.; Wang, H. F.; Yan, Q. J.; Wang, W.; Huang, J.; Chen, F. E. Chin. J. Org. Chem. 2023, 43, 2647 (in Chinese).
[12]
(归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿, 有机化学. 2023, 43, 2647.)
[12]
(n) Pu, J. X.; Jia, X. Y.; Han, L. R.; Li, Q. H. Chin. J. Org. Chem. 2023, 43, 2591 (in Chinese).
[12]
(普佳霞, 贾小英, 韩丽荣, 李清寒, 有机化学. 2023, 43, 2591.)
[13]
(a) Wang, P. Z.; Zhao, Q. Q.; Xiao, W.-J.; Chen, J. R. Green Synth. Catal. 2020, 1, 42.
[13]
(b) Yu, X. Y.; Chen, J. R.; Xiao, W. J. Chem. Rev. 2021, 121, 506.
[13]
(c) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
[13]
(d) Xuan, L.; Du, R.; Lei, P.; Zhao, W.; Tan, L.; Ni, C.; Wang, H.; Yan, Q.; Wang, W.; Chen, F. Green Chem. 2022, 24, 9475.
[13]
(e) Wang, P. Z.; Xiao, W. J.; Chen, J. R. Nat. Rev. Chem. 2023, 7, 35.
[13]
(f) Dong, J. H.; Xuan, L. M.; Wang, C.; Zhao, C. X.; Wang, H. F.; Yan, Q. J.; Wang, W.; Chen, F. E. Chin. J. Org. Chem. 2024, 44, 111 (in Chinese).
[13]
(董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿, 有机化学. 2024, 44, 111.)
[13]
(g) Yang, X. N.; Guo, H. Y.; Zhou, R. Chin. J. Org. Chem. 2023, 43, 2720 (in Chinese).
[13]
(杨晓娜, 郭宏宇, 周荣, 有机化学. 2023, 43, 2720.)
[14]
(a) Schultz, D. M.; Yoon, T. P. Scienc. 2014, 343, 985.
[14]
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[14]
(c) Skubi, K. L.; Blumand, T. R.; Yoon T. P. ; Chem. Rev. 2016, 116, 10035.
[14]
(d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[14]
(e) Xuan, J.; Xiao, W. J. Angew. Chem.. Int. Ed. 2012, 51, 6828.
[14]
(f) Chen, Y. Y.; Lu, L. Q.; Xiao, W. J. Sci China: Chem. 2019, 62, 24.
[14]
(g) Zhou, Q. Q.; Zou, Y. Q.; Lu, L. Q.; Xiao, W. J. Angew. Chem.. Int. Ed. 2019, 58, 1586.
[14]
(h) Yu, X. Y.; Chen, J. R.; Xiao, W. J. Chem. Rev. 2021, 121, 506.
[14]
(i) Xie, Y.; Xuan, J. Chin. J. Org. Chem. 2022, 42, 4247 (in Chinese).
[14]
(谢阳, 宣俊, 有机化学. 2022, 42, 4247.)
[14]
(j) Candish, L.; Collins, K. D.; Cook, G. C.; Douglas, J. J.; Gómez- Suárez, A.; Jolit, A.; Keess, S. Chem. Rev. 2022, 122, 2907.
[14]
(k) Chen, Z. L.; Xie, Y.; Xuan, J. Eur. J. Org. Chem. 2022, e202201066.
[15]
(a) Ghosh, S.; Pyne, P.; Ghosh, A.; Choudhury, S.; Hajra, A. Org. Biomol. Chem. 2023, 21, 1591.
[15]
(b) Bell, J. D.; Murphy, J. A. Chem. Soc. Rev. 2021, 50, 9540.
[16]
(a) Bagdi, A. K.; Rahman, M.; Bhattacherjee, D.; Zyryanov, G. V.; Ghosh, S.; Chupakhin, O. N.; Hajra, A. Green Chem. 2020, 22, 6632.
[16]
(b) Cannalire, R.; Pelliccia, S.; Sancineto, L.; Novellino, E.; Tron, G. C.; Giustiniano, M. Chem. Soc. Rev. 2021, 50, 766.
[17]
Chen, M.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2012, 48, 11686.
[18]
(a) Liu, Q. P.; Huo, C. D.; Fu, Y.; Du, Z. Y. Org. Biomol. Chem. 2022, 20, 6721.
[18]
(b) Victoria Bobo, M.; Kuchta, J. J.; Vannucci, A. K. Org. Biomol. Chem. 2021, 19, 4816.
[18]
(c) Varlet, T.; Bouchet, D.; Elslande, E. V.; Masson, G. Chem. Eur. J. 2022, 28, e202201707.
[19]
Guo, W.; Tan, W.; Zhao, M. M.; Tao, K. L.; Zheng, L. Y.; Wu, Y. Q.; Chen, D. L.; Fan, X. L. RSC Adv. 2017, 7, 37739.
[20]
Rahaman, R.; Das, S.; Barman, P. V. Green Chem. 2018, 20, 141.
[21]
(a) Ohkubo, K.; Mizushima, K.; Iwataa, R.; Fukuzumi, S. Chem. Sci. 2011, 2, 715.
[21]
(b) Cui, H.; Wei, W.; Yang, D.; Zhang, Y.; Zhao, H.; Wang, L.; Wang, H. Green Chem. 2017, 19, 3520.
[21]
(c) Zalesskiy, S. S.; Shlapakov, N. S.; Ananikov, V. P. Chem. Sci. 2016, 7, 6740.
[21]
(d) Shi, Q.; Li, P. H.; Zhua, X.; Wang, L. Green Chem. 2016, 18, 4916.
[22]
Penteado, F.; Caroline S. Gomes, C. S.; Monzon, L. I.; Perin, G.; Claudio C. Silveira, C. C.; Lenard?o, E. J. Eur. J. Org. Chem. 2020, 14, 2110.
[23]
Hazarika, S.; Barman, P. ChemistrySelec. 2020, 5, 11583.
[24]
Liu, C. P.; Peng, X. J.; Hu, D.; Shi, F.; Huang, P. P.; Luo, J. J.; Liu, Q.; Liu, L. X. New J. Chem. 2020, 44, 17245.
[25]
Huang, Q.; Peng, X. J.; Li, H.; He, H. P.; Liu, L. X. Molecule. 2022, 27, 772.
[26]
Rathore, V.; Kumar, S. Green Chem. 2019, 21, 2670.
[27]
(a) Saba, S.; Rafique, J.; Franco, M. S.; Schneider, A. R.; Esp?ndola, L.; Silva, D. O.; Braga, A. L. Org. Biomol. Chem. 2018, 16, 880.
[27]
(b) Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L. Y.; Wu, Y.; Chen, D.; Fan, X. L. RSC Adv. 2017, 7, 37739.
[27]
(c) Saima, D. E.; Lavekar, A. G.; Sinha, A. K. Org. Biomol. Chem. 2016, 14, 6111.
[28]
(a) Su, C. L.; Acik, M.; Takai, K.; Lu, J.; Hao, S. J.; Zheng, Y.; Wu, P. P.; Bao, Q. L.; Enoki, T.; Chabal, Y. J.; Loh, K. P. Nat. Commun. 2012, 3, 1298.
[28]
(b) Lv, G. Q.; Wang, H. L.; Yang, Y. G.; Deng, T. S.; Chen, C. M.; Zhu, Y. L.; Hou, X. L. ACS Catal. 2015, 5, 5636.
[29]
(a) Arceo, E.; Jurberg, I. D.; lvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
[29]
(b) Guo, Q.; Wang, M.; Liu, H.; Wang, R.; Xu, Z. Angew. Chem.. Int. Ed. 2018, 57, 4747.
[30]
(a) Cheng, Y. Z.; Feng, Z. J.; Zhang, X.; You, S. L. Chem. Soc. Rev. 2022, 51, 2145.
[30]
(b) Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P. J. Am. Chem. Soc. 2020, 142, 5461.
[30]
(c) Lima, C. G. S.; Lima, T. M.; Duarte, M.; Jurberg, I. D.; Paix?o, M. W. ACS Catal. 2016, 6, 1389.
[31]
Yuan, W. K.; Huang, J.; Xu, X.; Wang, L.; Tang, X. Y. Org. Lett. 2021, 23, 7139.
[32]
Ye, L.; Chen, J.; Mao, P.; Zhang, X.; Yan, M. Tetrahedron Lett. 2017, 58, 2743.
[33]
Priya, V. R. P.; Mercy, A. A. H.; Natarajan, K.; Nandi, G. C. Synlet. 2023, 10.1055/a-2107-5396.
[34]
(a) Kumaraswamy, G.; Raju, R.; Narayanarao, V. RSC Adv. 2015, 5, 22718.
[34]
(b) Kumar, A.; Gupta, G.; Srivastava, S. Org. Lett. 2011, 13, 6366.
[35]
(a) Saha, S.; Bagdi, A. K. Org. Biomol. Chem. 2022, 20, 3249.
[35]
(b) Gao, R. Y.; Zuo, L. L.; Wang, F.; Li, C. Y.; Jiang, H. J.; Li, P. H.; Wang, L. Chin. J. Org. Chem. 2022, 42, 1883 (in Chinese).
[35]
(高润烨, 左玲玲, 王芳, 李传莹, 蒋华江, 李品华, 王磊, 有机化学. 2022, 42, 1883.)
[36]
Shi, Q.; Li, P. H.; Zhang, Y.; Wang, L. Org. Chem. Front. 2017, 4, 1322.
[37]
Tambe, S. D.; Rohokale, R. S.; Kshirsagar, U. A. Eur. J. Org. Chem. 2018, 18, 2117.
[38]
(a) Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; Konig, B. Acc. Chem. Res. 2016, 49, 1566.
[38]
(b) Babu, S. S.; Muthuraja, P.; Yadav, P.; Gopinath, P. Adv. Synth. Catal. 2021, 363, 1782.
文章导航

/