研究论文

α-氰醇甲磺酸酯在合成α-氨基腈类化合物中的应用

  • 张勇 ,
  • 田志高 ,
  • 黄琳 ,
  • 侯秋飞 ,
  • 范红红 ,
  • 汪万强
展开
  • 湖北文理学院 食品科学技术学院?化学工程学院 湖北襄阳 441053

收稿日期: 2023-08-17

  修回日期: 2023-10-19

  网络出版日期: 2023-11-08

基金资助

湖北省自然科学基金(2021CFB160)

Application of α-Cyanohydrin Methanesulfonates for the Synthesis of α-Aminonitriles

  • Yong Zhang ,
  • Zhigao Tian ,
  • Lin Huang ,
  • Qiufei Hou ,
  • Honghong Fan ,
  • Wanqiang Wang
Expand
  • School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053
* Corresponding author. E-mail:

Received date: 2023-08-17

  Revised date: 2023-10-19

  Online published: 2023-11-08

Supported by

Natural Science Foundation of Hubei Province(2021CFB160)

摘要

报道了无过渡金属存在下α-氰醇甲磺酸酯与芳香胺的亲核取代反应. 该方法的原料简单易得, 反应条件温和, 具有良好的底物适用性和官能团兼容性, 以较好的产率得到了一系列重要的α-氨基腈类化合物. 更重要的是, 该方法还适用于含季碳中心的α-氰醇甲磺酸酯以及其它氮亲核试剂, 得到的α-氨基腈非常容易衍生化.

本文引用格式

张勇 , 田志高 , 黄琳 , 侯秋飞 , 范红红 , 汪万强 . α-氰醇甲磺酸酯在合成α-氨基腈类化合物中的应用[J]. 有机化学, 2024 , 44(2) : 561 -572 . DOI: 10.6023/cjoc202308015

Abstract

An efficient synthesis of α-aminonitriles via nucleophilic substitution of α-cyanohydrin methanesulfonates with aromatic amines was developed. This transition metal-free protocol has the advantages of cheap and easily available starting materials, broad substrate scope, excellent functional group compatibility, and very mild and simple operations. Furthermore, this strategy could also be applicable to quaternary α-cyanohydrin methanesulfonates and various nitrogen nucleophiles. A range of derivatives were readily obtained through subsequent elaboration of α-aminonitriles.

参考文献

[1]
(a) Feldman, P. L.; Brackeen, M. F. J. Org. Chem. 1990, 55, 4207.
[1]
(b) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359.
[1]
(c) Connon S. J. Angew. Chem.. Int. Ed. 2008, 47, 1176.
[1]
(d) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
[1]
(d) Zhang, F.-G.; Zhu, X.-Y.; Li, S.; Nie, J.; Ma, J.-A. Chem. Commun. 2012, 48, 11552.
[1]
(e) Bachon, A.-K.; Opatz, T. J. Org. Chem. 2016, 81, 1858.
[1]
(f) Kurono, N.; Ohkuma, T. ACS Catal. 2016, 6, 989.
[1]
(g) Kouznetsov, V. V.; Galvis, C. E. P. Tetrahedro. 2018, 74, 773.
[1]
(h) Grundke, C.; Vierengel, N.; Opatz, T. Chem. Rec. 2020, 20, 989.
[1]
(i) Ullah, B.; Gupta, N. K.; Ke, Q.; Ullah, N.; Cai, X.; Liu, D. Catalyst. 2022, 12, 1149.
[1]
(j) Zhou, Y.; Chen, H.; Lei, P.; Gui, C.; Wang, H.; Yan, Q.; Wang, W.; Chen, F. Chin. Chem. Lett. 2022, 33, 4850.
[2]
Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. J. Am. Chem. Soc. 1990, 112, 3712.
[3]
Martinez, E. J.; Owa, T.; Schreiber, S. L.; Corey, E. J. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 3496.
[4]
Carre?o Otero, A. L.; Vargas Méndez, L. Y.; Duque L, J. E.; Kouznetsov, V. V. Eur. J. Med. Chem. 2014, 78, 392.
[5]
Gauthier, J. Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L. T.; Falgueyret, J.-P.; Kimmel, D. B.; Lamontagne, S.; Léger, S.; LeRiche, T.; Li, C. S.; Massé, F.; McKay, D. J.; Nicoll-Griffith, D. A.; Oballa, R. M.; Palmer, J. T.; Percival, M. D.; Riendeau, D.; Robichaud, J.; Rodan, G. A.; Rodan, S. B.; Seto, C.; Thérien, M.; Truong, V.-L.; Venuti, M. C.; Wesolowski, G.; Young, R. N.; Zamboni, R.; Black, W. C. Bioorg. Med. Chem. Lett. 2008, 18, 923.
[6]
Deacon, C. F.; Holst, J. J. Adv. Thermoelectr. 2009, 26, 488.
[7]
Kuhn, B.; Hennig, M.; Mattei, P. Curr. Top. Med. Chem. 2007, 7, 609.
[8]
Strecker A. Liebigs Ann. Chem. 1850, 75, 27.
[9]
(a) Shen, K.; Liu, X.; Cai, Y.; Lin, L.; Feng, X. Chem.-Eur. J. 2009, 15, 6008.
[9]
(b) Harusawa, S.; Shioiri, T. Tetrahedro. 2016, 72, 8125.
[9]
(c) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762.
[9]
(d) Davis, F. A.; Reddy, R. E.; Portonovo, P. S. Tetrahedron Lett. 1994, 35, 9351.
[9]
(e) Cruz-Acosta, F.; Santos-Expósito, A.; de Armas, P.; García-Tellado, F. Chem. Commun. 2009, 6839.
[9]
(f) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2009, 131, 15118.
[10]
(a) Sun, P.; Qian, C.; Wang, L.; Chen, R. Synth. Commun. 2002, 32, 2973.
[10]
(b) Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedro. 2002, 58, 2529.
[10]
(c) De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407.
[10]
(d) De S. K. J. Mol. Catal. A: Chem. 2005, 225, 169.
[10]
(e) De S. K. Synth. Commun. 2005, 35, 653.
[10]
(f) Paraskar, A. S.; Sudalai, A. Tetrahedron Lett. 2006, 47, 5759.
[11]
Pan, S. C.; List, B. Synlet. 2007, 2007, 0318.
[12]
Das, B.; Ramu, R.; Ravikanth, B.; Reddy, K. R. Synthesi. 2006, 2006, 1419.
[13]
Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595.
[14]
(a) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 47, 2354.
[14]
(b) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
[14]
(c) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249.
[14]
(d) Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Org. Lett. 2014, 16, 2346.
[14]
(e) Ushakov, D. B.; Gilmore, K.; Kopetzki, D.; McQuade, D. T.; Seeberger, P. H. Angew. Chem.. Int. Ed. 2014, 53, 557.
[14]
(f) Wagner, A.; Ofial, A. R. J. Org. Chem. 2015, 80, 2848.
[14]
(g) Shen, H.; Hu, L.; Liu, Q.; Hussain, M. I.; Pan, J.; Huang, M.; Xiong, Y. Chem. Commun. 2016, 52, 2776.
[14]
(h) Vega, J. A.; Alonso, J. M.; Méndez, G.; Ciordia, M.; Delgado, F.; Trabanco, A. A. Org. Lett. 2017, 19, 938.
[14]
(i) Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
[14]
(j) Nauth, A. M.; Schechtel, E.; D?ren, R.; Tremel, W.; Opatz, T. J. Am. Chem. Soc. 2018, 140, 14169.
[14]
(k) Wakaki, T.; Sakai, K.; Enomoto, T.; Kondo, M.; Masaoka, S.; Oisaki, K.; Kanai, M. Chem.-Eur. J. 2018, 24, 8051.
[14]
(l) Mudithanapelli, C.; Dhorma, L. P.; Kim, M.-H. Org. Lett. 2019, 21, 3098.
[14]
(m) Shi, S.; Yang, X.; Tang, M.; Hu, J.; Loh, T.-P. Org. Lett. 2021, 23, 4018.
[15]
(a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew. Chem.. Int. Ed. 2010, 49, 6369.
[15]
(b) Inamoto, Y.; Kaga, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2013, 15, 3452.
[15]
(c) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
[15]
(d) Fuentes de Arriba, á. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem.. Int. Ed. 2017, 56, 3655.
[15]
(e) Trillo, P.; Slagbrand, T.; Adolfsson, H. Angew. Chem.. Int. Ed. 2018, 57, 12347.
[15]
(f) Ong, D. Y.; Fan, D.; Dixon, D. J.; Chiba, S. Angew. Chem.. Int. Ed. 2020, 59, 11903.
[15]
(g) Yan, F.; Huang, Z.; Du, C.-X.; Bai, J.-F.; Li, Y. J. Catal. 2021, 395, 188.
[15]
(h) Yu, B.; Bodinier, F.; Saague-Tenefo, M.; Gerardo, P.; Ardisson, J.; Lannou, M.-I.; Sorin, G. Eur. J. Org. Chem. 2021, 2021, 3634.
[15]
(i) Liu, L.; Liu, Y.; Shen, X.; Zhang, X.; Deng, S.; Chen, Y. J. Org. Chem. 2022, 87, 6321.
[16]
Liu, T.-L.; Li, Z.-F.; Tao, J.; Li, Q.-H.; Li, W.-F.; Li, Q.; Ren, L.-Q.; Peng, Y.-G. Chem. Commun. 2020, 56, 651.
[17]
(a) Wang, L.-G.; Zheng, Y.-X.; Zhou, X.; Wang, H.-F.; Yan, Q.-J.; Wang, W.; Chen, F.-E. Chin. J. Org. Chem. 2023, 43, 668 (in Chinese).
[17]
(王雷刚, 郑逸轩, 周希, 王海峰, 严琼姣, 汪伟, 陈芬儿, 有机化学. 2023, 43, 668.)
[17]
(b) Liu, S.; Meng, L.; Zeng, X.; Hammond, G. B.; Xu, B. Chin. J. Chem. 2021, 39, 913.
[18]
(a) Ueda, M.; Nishimura, K.; Ryu, I. Synlet. 2013, 24, 1683.
[18]
(b) Wu, G.; Xu, S.; Deng, Y.; Wu, C.; Zhao, X.; Ji, W.; Zhang, Y.; Wang, J. Tetrahedro. 2016, 72, 8022.
[18]
(c) Li, C.; Zhang, Y.; Sun, Q.; Gu, T.; Peng, H.; Tang, W. J. Am. Chem. Soc. 2016, 138, 10774.
文章导航

/