研究论文

亚硝酸叔丁酯参与的酰胺水解反应

  • 陶苏艳 ,
  • 项紫欣 ,
  • 白俊杰 ,
  • 万潇 ,
  • 万小兵
展开
  • 苏州大学材料与化学化工学部 江苏省有机合成重点实验室 江苏苏州 215123

收稿日期: 2023-10-07

  修回日期: 2023-11-02

  网络出版日期: 2023-11-08

基金资助

国家自然科学基金(21973068); 国家自然科学基金(21971175)

Amide Hydrolysis Reaction Using tert-Butyl Nitrite

  • Suyan Tao ,
  • Zixin Xiang ,
  • Junjie Bai ,
  • Xiao Wan ,
  • Xiaobing Wan
Expand
  • Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123
* Corresponding author. E-mail:

Received date: 2023-10-07

  Revised date: 2023-11-02

  Online published: 2023-11-08

Supported by

National Natural Science Foundation of China(21973068); National Natural Science Foundation of China(21971175)

摘要

酰胺是具有重要功能的化合物, 也是多样的合成子, 在有机合成和药物化学领域被广泛应用. 报道了温和条件下亚硝酸叔丁酯促进的伯酰胺水解反应, 制备了一系列羧酸化合物. 反应条件温和, 原料简单易得, 操作简便, 反应体系绿色. 该方法还表现出良好的官能团兼容性和底物的普适性.

本文引用格式

陶苏艳 , 项紫欣 , 白俊杰 , 万潇 , 万小兵 . 亚硝酸叔丁酯参与的酰胺水解反应[J]. 有机化学, 2024 , 44(2) : 550 -560 . DOI: 10.6023/cjoc202310004

Abstract

Amide is a compound that serves important functions and acts as versatile synthons, finding wide applications in organic synthesis and pharmaceutical chemistry. In this study, the mild hydrolysis reaction of primary amides using tert-butyl nitrite is showed, which leads to the formation of diverse carboxylic acids. This method stands out because it operates under neutral conditions, has a wide range of applicable substrates, and is compatible with various functional groups.

参考文献

[1]
Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
[2]
Ieong, K. W.; Pavlov, M. Y.; Kwiatkowski, M.; Forster, A. C.; Ehrenberg, M. J. Am. Chem. Soc. 2012, 134, 17955.
[3]
Rao, S. N.; Mohan, D. C.; Adimurthy, S. Green Chem. 2014, 16, 4122.
[4]
Acosta-Guzman, P.; Mateus-Gomez, A.; Gamba-Sanchez, D. Molecule. 2018, 23, 2382.
[5]
Mucsi, Z.; Chass, G. A.; Csizmadia, I. G. J. Phys. Chem. . 2008, 112, 7885.
[6]
Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205.
[7]
Yedage, S. L.; Bhanage, B. M. J. Org. Chem. 2017, 82, 5769.
[8]
de Figueiredo, R. M.; Suppo, J. S.; Campagne, J. M. Chem. Rev. 2016, 116, 12029.
[9]
Sebastian, D.; Satishkumar, S.; Pradhan, P.; Yang, L.; Lakshman, M. K. J. Org. Chem. 2022, 87, 18.
[10]
Kemnitz, C. R.; Loewe, M. J. J. Am. Chem. Soc. 2007, 129, 2521.
[11]
Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899.
[12]
Ou, W.; Huang, P. Q. Sci. China: Chem. 2020, 63, 11.
[13]
Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. ACS Catal. 2020, 10, 12109.
[14]
Absillis, G.; Parac-Vogt, T. N. Inorg. Chem. 2012, 51, 9902.
[15]
Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413.
[16]
Li, G.; Lei, P.; Szostak, M. Org. Lett. 2018, 20, 5622.
[17]
Mahesh, S.; Tang, K. C.; Raj, M. Molecule. 2018, 23, 2615.
[18]
Stadler, A.; Pichler, S.; Horeis, G.; Kappe, C. O. Tetrahedro. 2002, 58, 3177.
[19]
Kremsner, J. M.; Kappe, C. O. Eur. J. Org. Chem. 2005, 2005, 3672.
[20]
Ismailsab, M.; Monisha, T. R.; Reddy, P. V.; Santoshkumar, M.; Nayak, A. S.; Karegoudar, T. B. Biocatal. Biotransform. 2017, 35, 74.
[21]
Knapp, R. R.; Bulger, A. S.; Garg, N. K. Org. Lett. 2020, 22, 2833.
[22]
Siddiki, S. M. A. H.; Rashed, M. N.; Touchy, A. S.; Jamil, M. A. R.; Jing, Y.; Toyao, T.; Maeno, Z.; Shimizu, K.-i. Catal. Sci. Technol. 2021, 11, 1949.
[23]
Xiong, W.; Wang, Y.; Yang, X.; Liu, W. H. Org. Lett. 2023, 25, 2948.
[24]
Chaudhary, P.; Gupta, S.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Green Chem. 2016, 18, 2323.
[25]
Goklani, P.; Gupta, A. Mater. Sci. Res. Indi. 2017, 14, 190.
[26]
Hansen, S. U.; Miller, G. J.; Barath, M.; Broberg, K. R.; Avizienyte, E.; Helliwell, M.; Raftery, J.; Jayson, G. C.; Gardiner, J. M. J. Org. Chem. 2012, 77, 7823.
文章导航

/